تأثیر ویژگی مصالح مختلف مورداستفاده در سطوح شهری بر ایجاد جزیره حرارتی در اقلیم گرم و خشک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد معماری و انرژی، دانشکده معماری و شهرسازی، دانشگاه هنر تهران، تهران، ایران

2 دانشیار گروه معماری و انرژی، دانشکده معماری و شهرسازی، دانشگاه هنر تهران، تهران، ایران

3 دانشیار عمران-فیزیک ساختمان، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران

چکیده

مصالح قابلیت جذب، انباشت و انتقال پرتوهای خورشید به جو را دارند. بدین ‌معنا که مصالح مورداستفاده در پوسته شهر، نقشی کلیدی در تغییر خرداقلیم شهرها و ایجاد اثر جزیره حرارتی دارد. برای شناسایی تأثیر مصالح مختلف پوسته شهری بر افزایش دمای هوای مجاور سطوح، یک مطالعه تجربی بر روی 30 نمونه از مصالح رایج مورداستفاده در پیاده‌راه، خیابان و بام در شهر تهران انجام شده است. در این پژوهش با هدف بررسی تأثیر خواص ترموفیزیکی و تابشی مصالح و با بهره‌گیری از ابزارهایی چون ترمومتر تماسی، دوربین مادون‌قرمز و طیف‌سنج، عملکرد حرارتی و نوری نمونه‌ها موردمطالعه قرار گرفت. با استفاده از روش‌های آماری، خصوصیات فیزیکی نمونه‌ها چون رنگ، جنس و بافت سطح و اثر هر یک بر تغییرات دمای سطوح به کمک داده‌های جمع‌آوری شده مشخص گردید. نتایج نشان می‌دهد که در اکثر نمونه‌ها، بیشینه دمای سطح بالاتر از oC 54 و شاخص بازتاب خورشیدی(SRI) و آلبیدوی کمتر از 50% است که در افزایش دمای هوای مجاور نقش به‌سزایی دارند. لذا استفاده از مصالح با رنگ‌ روشن و صیقلی و همچنین آلبیدو بالا، به شرط کنترل خیرگی، از مؤثر‌ترین راهکارهای کنترل افزایش دمای هوای مجاور است. این مطالعه می‌تواند در انتخاب هرچه بهتر مصالح مناسب، کاهش اثر جزیره حرارتی و در نتیجه بهبود شرایط آسایش حرارتی در محیط‌های خارجی در ایران مؤثر باشد.

کلیدواژه‌ها


-         Akbari, H., Bell, R., Brazel, T., Cole, D., Estes, M., Heisler, G., ... & Zalph, B. (2008). Reducing Urban Heat Islands: Compendium of Strategies–Urban Heat Island Basics. US Environmental Protection Agency, 1–22.
-         Akbari, H., & Matthews, H. D. (2012). Global cooling updates: Reflective roofs and pavements. Energy and Buildings, 55, 2–6.
-         Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2014). Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy and Buildings, 69, 22–32.
-         ASTM International (1996). ASTM E903-96: Standard test method for solar absorptance, reflectance, and transmittance of materials using integrating spheres.  In Annual Book of ASTM Standards. West Conshohocken, PA: American Society for Testing and Materials.
-         ASTM International (2011). ASTM STANDARD E1980-11: Standard practice for calculating solar reflectance index of horizontal and low-sloped opaque surfaces. In Annual Book of ASTM Standards. West Conshohocken, PA: American Society for Testing and Materials.
-         Benrazavi, R. S., Dola, K. B., Ujang, N., & Benrazavi, N. S. (2016). Effect of pavement materials on surface temperatures in tropical environment. Sustainable Cities and Society, 22, 94–103.
-         Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities and Society, 23, 94–104.
-         Carnielo, E., & Zinzi, M. (2013). Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Building and Environment, 60, 56–65.
-         Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, 77(2), 231–49.
-         Dvorak, B., & Volder, A. (2010). Green roof vegetation for North American ecoregions: a literature review. Landscape and Urban Planning, 96(4), 197–213.
-         Enríquez, E., Fuertes, V., Cabrera, M. J., Seores, J., Muñoz, D., & Fernández, J. F. (2017). New strategy to mitigate urban heat island effect: Energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials. Solar Energy, 149, 114–24.
-         Google Maps (2014). BHRC in Tehran, Iran. Retrieved from https://www.google.com/maps/place/Road,+Housing+and+Development+Research+Center.
-         Hirano, Y., & Fujita, T. (2012). Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37(1), 371–83.
-         Kantzioura, A., Kosmopoulos, P., & Zoras, S. (2012). Urban surface temperature and microclimate measurements in Thessaloniki. Energy and Buildings, 44, 63–72.
-         Karlessi, T., Santamouris, M., Apostolakis, K., Synnefa, A., & Livada, I. (2009). Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy, 83(4), 538–51.
-         Kolokotroni, M., & Giridharan, R. (2008). Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy, 82(11), 986–98.
-         Levinson, R., Berdahl, P., Akbari, H., Miller, W., Joedicke, I., & Reilly, J. (2007) Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Solar Energy Materials and Solar Cells, 91(4), 304–14.
-         Li, H., Harvey, J., & Kendall, A. (2013). Field measurement of albedo for different land cover materials and effects on thermal performance. Building and Environment, 59, 536–546.
-         Lin, Y., & Ichinose, T. (2014). Experimental evaluation of mitigation of thermal effects by “Katsuren travertine” paving material. Energy and Buildings, 81, 253–61.
-         Lynn, B. H., Carlson, T. N., Rosenzweig, C., Goldberg, R., Druyan, L., & Cox, J. (2009). A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. Journal of Applied Meteorology and Climatology, 48(2), 199–216.
-         Ng, E., Chen, L., Wang, Y., & Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 47, 256-271.
-         Oke, T. R., Johnson, G. T., Steyn, D. G., & Watson, I. D. (1991). Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: diagnosis of causation. Boundary-layer meteorology, 56(4), 339–58.
-         Qin, Y. (2016). Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. International Journal of Heat and Mass Transfer, 97, 391–9.
-         Radhi, H., Fikry, F., & Sharples, S. (2013). Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning, 113, 47–61.
-         Radhi, H., Assem, E., & Sharples, S. (2014). On the colours and properties of building surface materials to mitigate urban heat islands in highly productive solar regions. Building and Environment, 72, 162–72.
-         Romeo, C., & Zinzi, M. (2013) Impact of a cool roof application on the energy and comfort performance in an existing non-residential building. A Sicilian case study. Energy and Buildings, 67, 647–57.
-         Salamanca, F., Georgescu, M., Mahalov, A., Moustaoui, M., Wang, M., & Svoma, B. M. (2013). Assessing summertime urban air conditioning consumption in a semiarid environment. Environmental Research Letters, 8(3), 034022. https://doi.org/10.1088/1748-9326/8/3/034022.
-         Salata, F., Golasi, I., de Lieto Vollaro, A., & de Lieto Vollaro, R. (2015). How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 99, 32-49.
-         Santamouris, M., Pavlou, K., Synnefa, A., Niachou, K., & Kolokotsa, D. (2007). Recent progress on passive cooling techniques: Advanced technological developments to improve survivability levels in low-income households. Energy and Buildings, 39, 859–866.
-         Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085–102.
-         Santamouris, M., Gaitani, N., Spanou, A., Saliari, M., Giannopoulou, K., & Vasilakopoulou, K. (2012). Using cool paving materials to improve microclimate of urban areas–Design realization and results of the flisvos project. Building and Environment, 53, 128–36.
-         Sen, S., & Roesler, J. (2019). Thermal and optical characterization of asphalt field cores for microscale urban heat island analysis. Construction and Building Materials, 217, 600-611.
-         Shahidan, M. F., Jones, P. J., Gwilliam, J., & Salleh, E. (2012). An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials. Building and Environment, 58, 245–57.
-         Susca, T., Gaffin, S. R., & Dell’Osso, G. R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159(8), 2119–26.
-         Synnefa, A., Santamouris, M., & Livada, I. (2006). A study of the thermal performance of reflective coatings for the urban environment. Solar Energy, 80(8), 968–81.
-         Synnefa, A., Santamouris, M., & Akbari, H. (2007). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39(11), 1167–74.
-         Synnefa, A., Dandou, A., Santamouris, M., Tombrou, M., & Soulakellis, N. (2008). On the use of cool materials as a heat island mitigation strategy. Journal of Applied Meteorology and Climatology, 47(11), 2846–56.
-         Synnefa, A., Karlessi, T., Gaitani, N., Santamouris, M., Assimakopoulos, DN., & Papakatsikas, C. (2011). Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Building and Environment, 46(1), 38–44.
-         Takebayashi, H., & Moriyama, M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment, 42(8), 2971–9.
-         Yaghoobian, N., & Kleissl, J. (2012). Effect of reflective pavements on building energy use. Urban Climate, 2, 25–42.
-         Yang, J., Wang, Z-H., & Kaloush, KE. (2015). Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renewable and Sustainable Energy Reviews, 47, 830–43.
-         Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy and Buildings, 55, 66–76.