حافظی، محمدرضا، زمردیان، زهرا سادات، و تحصیلدوست، محمد (1395). فرایند دستیابی به نمای دوپوسته دارای بهرهوری مناسب انرژی، نمونه موردی یک ساختمان اداری در تهران. مطالعات معماری ایران، 10، 101-122.
- ریاضی، جمشید (1389). ویژگیهای کارکردی دیوارهای خارجی ساختمانهای متعارف (قابلیتهای عملکردی، رفتاری، ساختاری).تهران: مرکز تحقیقات ساختمان و مسکن.
- ریاضی، جمشید (1394). ویژگیهای کارکردی دیوارهای داخلی ساختمانهای متعارف (قابلیتهای عملکردی، رفتاری، ساختاری).تهران: مرکز تحقیقات ساختمان و مسکن.
- ریاضی، جمشید، و ماجدی، محمد حسین (1388).ویژگیهای کارکردی در و پنجره ساختمانهای متعارف (قابلیتهای عملکردی، رفتاری، ساختاری).تهران: مرکز تحقیقات ساختمان و مسکن.
- سخندان سرخابی، زهرا، و خانمحمدی، محمد علی (1394). بهینه کردن کارکرد انرژی دیوارهای بدون بازشو در جبهههای آفتابگیر.هویت شهر،9(23)، 73-89.
- فیاض، ریما (1392). سطح بهینه پنجره ساختمانهای مسکونی در اردبیل و تهران.نامه معماری و شهرسازی، 5(10)، 105-119.
- قاسمزاده، مسعود (1391). معیارهای ابعادی و ملاحضات طراحی فضاهای واحد مسکونی شهری.تهران: مرکز تحقیقات راه، مسکن و شهرسازی.
- مرکز تحقیقات ساختمان و مسکن (1389). مبحث نوزدهم مقررات ملی ساختمان. تهران: مرکز تحقیقات ساختمان و مسکن.
- مهدوینژاد، محمدجواد، طاهباز، منصوره، و دولتآبادی، مهناز (1395). بهینهسازی تناسبات و نحوه استفاده از رف نور در معماری کلاسهای آموزشی. هنرهای زیبا - معماری و شهرسازی،21(2)، 81-92.
- یوسفی، ملیکا، مداحی، سیدمهدی، و سهیلیفرد، مهدی (1396). بهینهسازی جداره خارجی ساختمان در راستای افزایش آسایش حرارتی ساکنان با بهرهگیری از الگوریتم ژنتیک. اولین همایش بین المللی عمران، معماری و شهر سبز پایدار.
- Ahmed, S., Weber, M., Liwicki, M., Langenhan, C., Dengel, A., & Petzold, F. (2014). Automatic analysis and sketch-based retrieval of architectural floor plans. Pattern Recognition Letters,35, 91-100.
- Ascione, F., Bianco, N., Stasio, C. D., Mauro, G. M., & Vanoli, G. P. (2017). Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach. Energy, 118, 999-1017.
- Attia, S., Gratia, E., Herde, A. D., & Hensen, J. L. M. (2012). Simulation-based decision support tool for early stages of zero-energy building design. Energy and Buildings, 49, 2-15.
- ASHRAE, FUNIP (2013).ASHRAE handbook: fundamentals (IP Edition).USA: Ashrae.
- Azari, R., Garshasbi, S., Amini, P., Rashed-Ali, H., & Mohammadi, Y. (2016). Multi-objective optimization of building envelope design for life cycle environmental performance.Energy and Buildings,126, 524-34.
- Baglivo, C., Maria Congedo, P., & Fazio, A. (2014). Multi-criteria optimization analysis of external walls according to ITACA protocol for zero energy buildings in the mediterranean climate.Building and environment,82, 467-80.
- Bichiou, Y., & Krarti, M. (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings,43, 3373-82.
- Bournas, I., & Haav, L. (2016).Multi-objective Optimization of Fenestration Design in Residential spaces.Malmö: The Case of MKB Greenhouse, Sweden.
- Caruso, G., & Kämpf, J. H. (2015). Building shape optimisation to reduce air-conditioning needs using constrained evolutionary algorithms.Solar Energy,118, 186-196.
- Chen, X., Hongxing, Y., & Weilong, Z. (2017). Simulation-based approach to optimize passively designed buildings: A case study on a typical architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 82, 1712-1725.
- Dogan, T., Saratsis, E., & Reinhart, C. (2015). The optimization potential of floor-plan typologies in early design energy modeling. 14th Conference of International Building Performance Simulation Association,Hyderabad, India, Dec. 7-9, 2015.
- Ercan, B., & Elias-Ozkan, S. T. (2015). Performance-based parametric design explorations: A method for generating appropriate building components. Design Studies, 38, 33-53.
- Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews, 22, 230-45.
- Fan, Y., & Xiaohua, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance.Applied Energy, 189, 327-335.
- Fang, Y. (2017). Optimization of Daylighting and Energy Performance Using Parametric Design, Simulation Modeling, and Genetic Algorithms.North Carolina State University.
- Futrell, B. J., Ozelkan, E. C., & Brentrup, D. (2015). Bi-objective optimization of building enclosure design for thermal and lighting performance. Building and environment,92, 591-602.
- Gossard, D., Lartigue, B., & Thellier, F. (2013). Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy and Buildings, 67, 253-260.
- Granadeiro, V., Duarte, J. P., Correia, J. R., & Lea, V. M. S. (2013). Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation. Automation in construction, 32, 196-209.
- Hendron, R., & Engebrecht, C. (2010). Building America house simulation protocols, National Renewable Energy Laboratory Golden (EERE).Washington, DC: Golden, CO: National Renewable Energy Laboratory.
- Hester, J., Gregory, J., & Kirchain, R. (2017). Sequential early-design guidance for residential single-family buildings using a probabilistic metamodel of energy consumption.Energy and Buildings, 134, 202-11.
- Hygh, J. S., DeCarolis, J. F., Hill, D. B., & Ranjithan, S. R. (2012). Multivariate regression as an energy assessment tool in early building design. Building and environment,57, 165-75.
- Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support.Solar Energy, 125, 161-79.
- Liu, S., Meng, X., & Tam, C. (2015). Building information modeling based building design optimization for sustainability. Energy and Buildings,105, 139-53.
- Löhnert, G., Dalkowski, A., & Sutter, W. (2003). Integrated Design Process: a guideline for sustainable and solar-optimised building design. Berlín: IEA International Energy Agency.
- Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews, 31, 101-12.
- Merrell, P., Schkufza, E., & Koltun, V. (2010). Computer-generated residential building layouts. ACM Transactions on Graphics (TOG),29(6), 181.
- Merriam-Webster (2017). Merriam-Webster online dictionary.
- Miles, J. C., Sisk, G. M., & Moore, C. J. (2001). The conceptual design of commercial buildings using a genetic algorithm. Computers & Structures,79, 1583-92.
- Negendahl, K., & Nielsen, T. R. (2015). Building energy optimization in the early design stages: A simplified method. Energy and Buildings,105, 88-99.
- Rodrigues, E., Gaspar, A. R., & Gomes, Á. (2014). Improving thermal performance of automatically generated floor plans using a geometric variable sequential optimization procedure. Applied Energy, 132, 200-215.
- Samuelson, H., Claussnitzer, S., Goyal, A., Chen, Y., & Romo-Castillo, A. (2016). Parametric energy simulation in early design: High-rise residential buildings in urban contexts. Building and environment, 101, 19-31.
- Schwartz, Y., Raslan, R., & Mumovic, D. (2016). Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study. Energy,97, 58-68.
- Tuhus-Dubrow, D., & Krarti, M. (2010). Genetic-algorithm based approach to optimize building envelope design for residential buildings. Building and environment,45, 1574-81.
- Wang, W., Rivard, H., and Zmeureanu, R. (2005). An object-oriented framework for simulation-based green building design optimization with genetic algorithms. Advanced Engineering Informatics,19, 5-23.
- Wang, W., Rivard, H., & Zmeureanu, R. (2006). Floor shape optimization for green building design. Advanced Engineering Informatics, 20(4), 363-378.
- Wright, Jonathan A (1986). The optimised design of HVAC systems.Doctoral dissertation, Loughborough University, JA Wright.
- Youssef, A., Ali, M. Z., Zhiqiang, J., & Reffat, R. M. (2016). Genetic algorithm based optimization for photovoltaics integrated building envelope. Energy and Buildings,127, 627-36.
- Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report,103.
- Zomorodian, Z. S., & Tahsildoost, M. (2017). Assessment of window performance in classrooms by long term spatial comfort metrics. Energy and Buildings,134, 80-93.
- http://saba.org.ir/saba_content/media/image/2012/07/4118_orig.pdf
- http://www.jaloxa.eu/resources/radiance/colour_picker/index.shtml