بررسی کارایی دیوار ترومب فتوولتاییک در ساختمان‌‌های مسکونی مشهد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد معماری و انرژی، گروه فناوری معماری، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران

2 استاد گروه فناوری معماری، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران

چکیده

در سالیان اخیر ترکیب‌های جدیدی از سامانه های غیرفعال به‌منظور افزایش کارایی آن‌ها معرفی شده‌‌اند. هدف از تحقیق حاضر بررسی عملکرد دیوار ترومب فتوولتاییک در ساختمان‌‌های مسکونی مشهد است که با استفاده از شبیه‌‌سازی انرژی، توسط نرم‌‌افزار انرژی پلاس صورت گرفت. دیوار ترومب آجری و بتنی با سطح پوشش فتوولتاییک در سه جایگاه متفاوت، فاصلۀ هوایی و دریچه‌های متفاوت برای کل سال بررسی شد. متغیرها به‌صورت یکپارچه شبیه‌‌سازی شدند. نتایج نشان داد که برای اتاقی به حجم ۱۲۰ مترمکعب با دیوار ترومب شش مترمربعی آجری و بتنی و سطح دریچۀ ۱۸ درصد، فاصلۀ هوایی ۰/۰۵ متر و سطح پوشش چهار مترمربع از صفحات فتوولتاییک (حدود ۶۶ درصد از دیوار ترومب)، گرمای دریافتی، تولید برق و آسایش حرارتی افزایش یافت و مقدار آن به‌ترتیب، ۲۵۷۶۵۲/۳، ۳۰۷۹۶۳/۶، ۱۹۷۵۴۸۲ کیلوژول و در ماه اکتبر، شرایط آسایش حرارتی، سرد ارزیابی شد. دمای سطح داخلی صفحات فتوولتاییک و گرمای دریافتی ناشی از همرفت داخلی از پایین به بالای دیوار ترومب افزایش یافت. بهترین محل استقرار صفحات فتوولتاییک روی دیوار خازن در مقایسه با قرارگیری در روی شیشه و در فاصلۀ هوایی در اوقات سرد سال پیشنهاد ‌‌شد، درحالی‌که برای اوقات گرم،‌ این موضوع برعکس است. 

کلیدواژه‌ها

موضوعات


رضیئی، طیب (۱۳۹۶). منطقه‌‌بندی اقلیمی ایران به روش کوپن- گایگر و بررسی جابه‌‌جایی مناطق اقلیمی کشور در سده‌‌ بیستم. فیزیک زمین و فضا، 43 (2)، 419- 439.
شمعی، فائزه و باقری سبزوار، هادی (۱۴۰۰). گونه‌‌شناسی خانه‌‌های بافت جدید شهر مشهد. هفتمین کنگرۀ سالانه بین‌‌المللی عمران، معماری و توسعه شهری، تهران. https://civilica.com/doc/1374443.
طاهری، زهرا، عباسپور فرد، محمدحسین، طبسی‌‌زاده، محمد، و ابوترابی زارچی، حسین (۱۳۹۲). تعیین شیب و جهت بهینه نصب سیستم‌‌های خورشیدی در شهر مشهد. دومین همایش ملی انرژی‌‌های نو وپاک، همدان. https://civilica.com/doc/277102.
فرنود، فاطمه و محمودی زرندی، مهناز (۱۳۹۴). معرفی سیستم دیوار ترومب فتوولتاییک با هدف کارکرد گرمایش بهینه ساختمان.  اولین همایش ملی توسعۀ پایدار شهری، تهران.
کلانتری، محسن و بهبهانی‌‌نیا، علی (۱۳۹۳). مدل‌‌سازی گذرای دیوار ترومب فتوولتاییک همراه با ذخیره‌‌سازی توسط مواد تغییر فازدهنده. رساله برای دریافت درجه کارشناسی ارشد مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی.
مقررات ملی ساختمان ایران، مبحث نوزدهم، صرفه‌‌جویی در مصرف انرژی (۱۳۹۹). (ویرایش چهارم). تهران:  وزارت راه و شهرسازی، مرکز تحقیقات راه، مسکن و شهرسازی، دفتر تدوین مقررات ملی ساختمان.
 
Abdullah, A.A., Attulla, F.S., Ahmed, O. K., & Algburi, S. (2022a). Effect of cooling method on the performance of PV/Trombe wall: Experimental assessment. Thermal Science Engineering Progress, 30, 101273-101283. https://doi.org/10.1016/j.tsep.2022.101273.
 Abdullah, A.A., Atallah, F.S., Algburi, S., & Ahmed, O.K. (2022b). Impact of a reflective mirrors on photovoltaic/trombe wall performance: Experimental assessment. Results in Engineering, 16, 100706-100716. https://doi.org/10.1016/j.rineng.2022.100706.
Ahmed, O.K., Hamada, K.I., & Salih, A.M. (2019). Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: an experimental and theoretical study. Energy, 171, 14-26. https://doi.org/10.1016/j.energy.2019.01.001.
Bruno, R., Bevilacqua, P., Cirone, D., Perrella, S., & Rollo, A.A. (2022). Calibration of the Solar Load Ratio Method to Determine the Heat Gain in PV-Trombe Walls. Energies, 15(1), 328-343. https://doi.org/10.3390/en15010328.
Fung, T.Y.Y., & Yang, H. (2008). Study on the thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy and Buildings. 40(3), 341-350. https://doi.org/10.1016/j.enbuild.2007.03.002.
Hegazy, A. (2000). Comparative study of the performance of four photovoltaic/thermal solar air collectors. Energy Conversion and Management, 41(8), 861-881. http://dx.doi.org/10.1016/S0196-8904(99)00136-3.
Hu, Z. He, W. Ji, J. Hu, D. Lv, S. Chen, H. Shen, Z. (2017). Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system. Applied Energy, 194, 81-93. https://doi.org/10.1016/j.apenergy.2017.02.018.
Irshad, K., Algarni, S., Islam, N., Rehman, S., Zahir, M.H., Pash, A.A., & Pillai, S.N. (2022). Parametric analysis and optimization of a novel photovoltaic trombe wall system with venetian blinds: Experimental and computayional study. Case Studies in Thermal Engineering, 34, 101958-101971. https://doi.org/10.1016/j.csite.2022.101958.
Irshad, K., Habib, k., & Thirumalaiswamy, N. (2015). Performance evaluation of PV-Trombe wall for sustainable building development. Procedia CIRP, 26, 624-629. http://doi.org/10.1016/j.procir.2014.07.116.
Islam, N., Irsha, K., Zahir, M. H., & Islam, S. (2021). Numerical and experimental study on the performance of a photovoltaic Trombe wall system with venetian blinds. Energy, 218, 119542-119557. https://doi.org/10.1016/j.energy.2020.119542.
Jiang, B., Jie, J., & Yi, H. (2008). The influence of PV coverage ratio on the thermal and electrical performance of photovoltaic-Trombe wall. Renewable Energy, 33(11), 2491-2498. https://doi.org/10.1016/j.renene.2008.02.001.
Jie, J., Hua, Y., Wei, H., Gang, P., Jiangping, L.C., & Bin, J. (2007). Modeling of a novel Trombe wall with PV cells. Building and Environment, 42(3), 1544-1552. https://doi.org/10.1016/j.buildenv.2006.01.005.
Ji, J., Yi, H., He, W., & Pei, G. (2007). PV-Trombe wall design for buildings in composite climates. Journal of  Solar Energy Engineering, 129(4), 431-437. https://doi.org/10.1115/1.2770751.
Lin, Y., Ji, J., Zhou, F., Ma, Y., Luo, K., & Lu. X. (2019). Experimental annumerical study on the performance of a built-middle PV Trombe wall system. Energy and Buildings, 200, 47-57. https://doi.org/10.1016/j.enbuild.2019.07.042.
Lin, Y., Zhong, S., Yang, W., Hao, X., & Li, C.Q. (2021). Multi-objective design optimization on building integrated photovoltaic with Trombe wall and phase change material based on life cycle cost and thermal comfort. Sustainable Energy Technologies and Assessments, 46, 101277-101291. https://doi.org/10.1016/j.seta.2021.101277.
Kaya, E.S., Aksel, M., Yigit, S., & Acikara, T. (2021). A numerical study on the effect of vent/wall area ratio on Trombe wall thermal performance. Engineering Sustainability, 174(5), 224-234. https://doi.org/10.1680/jensu.20.00064.
Koyunbaba, K.B., & Yilmaz, Z. (2012). The comparison of Trombe wall systems with single glass, double glass, and PV panels. Renewable Energy, 45, 111-118. https://doi.org/10.1016/j.renene.2012.02.026.
Liping, W., & Anguri, L. (2006). A numerical study of Trombe wall for enhancing stack ventilation in buildings. The 23rd International Conference on Passive and Low Energy Architecture, Geneva.
Peng, J., Lu, l., Yang, H., & Han, J. (2013). Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade. Applied Energy, 112, 646-656.
Rabani, M., Kalantar, V., & Rabani, M. (2017). Heat transfer analysis of a Trombe wall with a projecting channel design. Energy, 134, 943-950. https://doi.org/10.1016/j.energy.2017.06.066.
Romero, R.L., Sanchez, R.J., Guerrero, D.M., Molina, F.J.L., & Alvarez, D.S. (2018). Mitigating energy poverty: potential contributions of combining PV and building thermal mass storage in low-income households. Energy Conversion Management, 173, 65-80. https://doi.org/10.1016/j.enconman.2018.07.058.
Sun, W., Ji, j., Lou, C., & He, W. (2011). Performance of PV-Trombe wall in winter correlated with south façade design. Applied Energy, 88(1), 224-231. http://dx.doi.org/10.1016/j.apenergy.2010.06.002.
Taffesse, F., Verma, A., Singh, S., & Tiwari, G.N. (2016). Periodic modeling of the semi-transparent photovoltaic thermal-Trombe wall (SPVT-TW). Solar Energy, 135, 265-273. http://dx.doi.org/10.1016/j.solener.2016.05.044.
Vats, K., Mishra, R.K., & Tiwari, A. (2012). A comparative study for a building integrated semi-transparent photovoltaic thermal (BISPVT) system integrated into the roof with and without duct. Journal of Fundamentals of Renewable Energy and Applications, 2, 1-4.
Xu, X., & Su, Y. (2013). Modeling of natural ventilation in the built-in photovoltaic-Trombe wall. Applied Mechanics and Materials, 448-453, 1537-1541. https://doi.org/10.4028/www.scientific.net/AMM.448-453.1537.
URL1: Climate.onebuilding.org/WMO_Region_2_Asia/IRN_Iran/index.html.