The Impact of Phase Change Materials (PCM) on the Duration of Spring and Autumn Transitional periods in Residential Buildings

Document Type : Original Article

Authors

1 M.Sc. in Energy and Architecture, School of Architecture and Urban Studies, the University of Arts, Tehran, Iran

2 Assistant Professor of Building Physics, Iran’s Building and Housing Research Center, Tehran, Iran

3 Associate Professor, School of Architecture and Urban Studies, Department of Architecture, the University of Arts, Tehran, Iran

4 Assistant Professor of Architectural Engineering, Pennsylvania State University, Pennsylvania, United Sates of America

Abstract

Two of the main issues societies are facing with today are limited fossil fuel resources and increase in energy consumption. A significant part of energy is consumed in residential buildings to obtain thermal comfort, thus so far are, many efforts have been made to improve the indoor thermal conditions and reduce energy consumption simultaneously. One of the issues in this regard is the impact of thermal mass on energy conservation and increase of indoor thermal comfort. Seasonal transition period is a time of year when there is a change of heating to cooling and vice versa. Within this period thermal comfort may be maintained consuming no energy. Lengthening this period will help to conserve energy, and this may be achieved using indoor thermal storage. Common thermal storage materials include high density and heavy materials and sensible heat usage for energy storage. There is a new and light-weight thermal mass (phase change material) especially used in high-rise constructions to reduce the structural load and preserve thermal energy. Phase change materials (PCM) are based on latent heat energy storage. In this paper, the thermal performance of residential buildings in Tehran during seasonal transition period of spring and autumn is studied, in order to maintain the highest reduction in energy consumption without relying on mechanical equipment, and to reduce depreciation of the equipment. The impact of phase change materials (PCM), with various melting temperatures (21, 23, 25, 27 and 29oC), on the duration of seasonal transition period is studied using energy simulation. The dimensions of the studied model are similar to those of a common apartment room in the city. The model was first constructed in Ecotect software and then using EnergyPlus, and Tehran weather data, and its annual heating load was calculated. The temperature set points were 20oC for winter and 28oC for summer. Thermal performance of PCMs with various melting temperatures, regarding the best energy consumption condition during a whole year and the number of the days that were added to the seasonal transition period were identified. In hot -arid climate of Tehran natural ventilation may be used to decrease cooling load and maintain thermal comfort during transition period. To study the impacts of natural ventilation on the period, various ventilation rates, 0, 1, 3, 5, 7, and 10 ach were considered with a constant debi rate. The results revealed that using PCMs as thermal storage material and natural ventilation, energy conservation will be achieved more easily during transition period. It was found that PCM with melting point of 29oC will reduce the annual energy consumption by 15% and will increase the seasonal transition period by 20%, with 5 ach natural ventilation, and has a significant effect on reducing thermal problems of the period and performance of the mechanical equipment. The spring transition period is from 12th March to 19th May. This period for autumn is from 5th October to 5th November, which is 38 days for spring period and 29 days for fall, without any energy consumption which results in shut down of mechanical equipment.

Keywords


-  آیین، سمیرا، خداکرمی، جمال، و محمدکاری، بهروز (1392). «بررسی تأثیر تختههای گچی حاوی مواد تغییرفازدهنده (PCM) در عملکرد حرارتی ساختمانهایی با اینرسی حرارتی بالا»، دانشگاه ایلام.
-  امامیفر، آرمین (1393). «بررسی روشهای ذخیرهسازی انرژی حرارتی»، اولین همایش ملی مدیریت انرژیهای نو و پاک.
-  حیدری، شاهین، و غفاری جباری، شهلا (1389). «تعیین محدودۀ زمانی آسایش حرارتی برای شهر تبریز»، مهندسی مکانیک مدرس، 4.
-  رازجویان، محمود (1386). آسایش در پناه باد، انتشارات دانشگاه شهید بهشتی، چاپ دوم.
-  سلگی، ابراهیم، محمدکاری، بهروز، حسینی، بهشید، و فیاض، ریما (1393). «بهینهسازی جرم حرارتی موجود در سیستم تهویه شبانه»، دانشگاه هنر تهران.
-  فیاض، ریما (1387). «تعیین سطح بهینه بازشوهای شفاف در ساختمانهای مسکونی برای پهنهبندیهای اقلیمی مختلف ایران»، طرح پژوهشی دانشگاه هنر تهران.
-  قویدل رحیمی، یوسف، و احمدی، محمود (1392). «برآورد و تحلیل زمانی آسایش اقلیمی شهر تبریز»، مجله جغرافیا و توسعه، 33.
-  مرکز تحقیقات ساختمان و مسکن (1389). مقررات ملی ساختمان ایران، مبحث نوزدهم صرفه جویی در مصرف انرژی، ویرایش سوم.
-  مؤسسه استاندارد و تحقیقات صنعتی ایران (1371). فراوردهها و مصالح ساختمانی – خواص حرارتی، رطوبتی مقادیر طراحی دجدولبندی شده، چاپ اول.
 
-  Betts, A. K. (2011). Seasonal climate transitions in New England, Royal meteorological society.
-  Diakaki. C., Grigoroudis. E, & Kolokotsa. D. (2008). “Towards a multi-objective optimization approach for improving energy efficiency in buildings”, Energy and Buildings, 40, 1747–1754.
-  Feng. L., Zhao. W., Zheng. J., Frisco. S., Song. P., & Li. X (2011). “The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices”, Solar Energy Materials and Solar Cells.
-  Frank. B. (2001). “Phase change material for space heating and cooling”, University of South Australia, Sustainable Energy Center, Presentation.
-  Guide A: Environmental design – CIBSE (1999). Chartered Institution of Building Services Engineers, London.
-  Huang, M.J., Eames, P.C., & Hewitt, N.J. (2006). “The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building”, Solar Energy Materials & Solar Cells, 90, 1951-1960.
-  Jin, X., Medina, M.A., & Zhang, X. (2016). “Numerical analysis for the optimal location of a thin PCM layer in frame walls”, Applied Thermal Engineering, 103, 1057–1063.
-  Lu, S., Chen, Y., Liu, S., & Kong, X. (2016). “Experimental research on a novel energy efficiency roof coupled withPCM and cool materials”, Energy and Buildings, 127, 159–169.
-  Muruganantham, K., Phelan, P., Horwath, P., Ludlam, D., & Mcdonald, T. (2010). “Experimental investigation of a bio-based phase-change material to improve building energy performance”, ASME.
-  Muruganantham, K., Phelan, P., Lee, T., & Reddy, A. (2010). “Application of Phase Change Material in Buildings: Field Date vs: EnergyPlus Simulation”, Arizona state university.
-  Pérez-Lombard, L., Ortiz, J, Pout, C. (2008). “A review on buildings energy consumption information”, Energy and Buildings, 40 (3), 394–398.
-  Sharma, A., Tyagi, V.V., Chen, C.R., & Buddhi, D. (2009). “Review on Thermal Energy Storage with Phase Change Materials and Applications”, Renewable and Sustainable Energy Reviews, 13, 318–345.
-  Shilei, L., Neng, Z., & Guohui, F. (2006). “Impact of phase change wall room on indoor thermal environment in winter”. Energy and Building, 38, 18–24.
-  Wang, X., Yu, H., Mei Z., & Lu L. (2016). “Experimental assessment on the use of phase chang materials (PCMs)-bricks in the exterior wall of a full-scale room”, Energy Conversion and Management, 120, 81–89.
-  Weinläder, H., Klinker, F., & Yasin, M. (2016). “PCM cooling ceilings in the Energy Efficiency Center—passive cooling potential of two different system designs”, Energy and Buildings, 119, 93–100.
-  Zhang, Y.P., Lin, K.P., Yang, R., Di, H.F., & Jiang, Y. (2006). “Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings”, Energy and Building, 38, 1262–9.
-  URL1:https://etown.edu/offices/facilities-management/files/air-conditioning%20to%20heat%20transition.pdf
-  URL2:http://phasechange.com/
-  URL3:http://apps1.eere.energy.gov/
-  URL4:http://www.energy-design-tools.aud.ucla.edu/climate-consultant/request-climate-consultant.php
-  URL5: http://www.chaharmahalmet.ir/