Assessment of the role of local parks in improving thermal comfort of outdoor spaces in arid and hot climates: A case study of Amirabad Park in Shahreza

Document Type : Original Article

Authors

1 Ph.D. Candidate, Faculty of Art and Architecture, Tarbiat Modares University, Tehran, Iran

2 Associate Professor, Department of Landscape Architecture, Faculty of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran

3 Associate Professor, Department of Construction, Faculty of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran

Abstract

Neighborhood parks serve as fundamental elements of urban spaces, offering extensive environmental, social, and cultural benefits. These green spaces significantly enhance urban life quality and contribute to thermal comfort improvement while mitigating the urban heat island effect, particularly in hot and arid climates. Despite their importance, the role of indigenous elements, such as native plant species and locally sourced materials, in regulating thermal conditions and assessing environmental comfort has not been thoroughly investigated. This research gap limits the effective integration of microclimate-responsive strategies into urban landscape planning and design. Addressing this issue is crucial for optimizing thermal conditions and enhancing human well-being in urban settings. This study aims to evaluate thermal comfort in small-scale open spaces and neighborhood parks to improve the microclimate of the Amirabad neighborhood in Shahreza, Iran, during summer and winter. The research focuses on identifying effective materials, vegetation, and water features that contribute to thermal regulation. The ultimate goal is to develop context-sensitive landscape design recommendations that enhance climate resilience and sustainability in urban environments, particularly in regions characterized by extreme temperatures. The study employs an interdisciplinary approach, incorporating literature review, field surveys, and computational simulations. The fieldwork involves measuring and recording key climatic variables, including air temperature, relative humidity, and wind speed. Additionally, structured questionnaires assess users’ thermal preferences and satisfaction levels. Simultaneously with the collection of field data on site, based on Taghvaei's model of "Fundamental Values and Factors of Landscape" (FVFL), an assessment of the park's landscape and its boundaries was conducted. The research further utilizes ENVI-met software (version 5.0.3) to simulate optimal design scenarios for summer and winter, providing insights into how different landscape elements influence microclimatic conditions. The findings indicate that material selection and vegetation significantly impact thermal comfort in open spaces. High-albedo crushed granite was identified as the most effective ground cover material due to its ability to lower surface temperature and enhance thermal comfort indices. Additionally, native tree species with broad canopies, such as Fraxinus excelsior (ash) and Ulmus minor (elm), play a vital role in providing shade, reducing ambient temperatures, and improving user comfort levels. Furthermore, the integration of water bodies in park designs has a positive effect on microclimatic conditions, as it increases humidity and lowers temperatures, particularly during summer. The study underscores the necessity of integrating native vegetation, high-albedo materials, and water features into urban park designs to enhance thermal comfort, mitigate the urban heat island effect, and promote climate resilience in hot and arid regions. These strategies contribute to energy conservation and encourage the utilization of locally available resources, fostering sustainable urban development. By implementing these approaches, cities can achieve greater climatic adaptability and environmental sustainability. The research findings provide a scientific basis for developing climate-responsive landscape design guidelines and urban planning policies, ensuring long-term improvements in the quality and functionality of open urban spaces. Ultimately, this study contributes to the broader discourse on sustainable urban environments by emphasizing the role of nature-based solutions in addressing climate challenges and enhancing the livability of urban neighborhoods.

Keywords

Main Subjects


کریم‌زاده، ‌جمشید، مهدی‌نژاد‌درزی، ‌جمال‌الدین و کریمی، باقر (1401). تاثیر تناسبات کالبدی بر عملکرد حرارتی ایوان‌ها در بافت تاریخی شیراز مبتنی‌بر بهبود شاخص آسایش حرارتی. نامه معماری و شهرسازی, 36(15), 27-52.
منتظری، مرجان، جهانشاه‌لو، لعال و ماجدی، حمید (1397). تأثیر مؤلفه‌های فرم کالبدی شهری بر آسایش حرارتی فضاهای باز شهری. نشریه مطالعات محیطی هفت حصار، 6(23)، 49-66.
یادگاری، پگاه و سجادزاده، حسن (1400). نقش الگوی فضایی و پوشش گیاهی فضاهای باز محلی بر میزان آسایش حرارتی در اقلیم سرد. نشریه مطالعات شهری، 10(40)، 15-26
احمدپور کلهرودی، نرگس، پورجعفر، محمدرضا، مهدوی‌نژاد، محمدجواد و یوسفیان، سمیرا (1396). نقش و تأثیر عناصر طراحی در کیفیت آسایش حرارتی فضاهای باز شهری بررسی موردی: طراحی پیاده راه طمقاچی‌ها در کاشان. نامه معماری و شهرسازی، 9(18)، 59-80.‎
طالب صفا، شهرزاد، طاهری شهرآئینی، مسعود، یانگ، شیائوشان و ربیعی، محمدرضا (1402). ارزیابی تأثیر سایه بر آسایش حرارتی فضای باز و تعیین محدودۀ آسایش حرارتی. صفه، 33(3)، 43-59.
مرئی، الهه، فیاض، ‌ریما، معماریان، ‌سینا و محمد‌کاری، بهروز (1399). تأثیر ویژگی مصالح مختلف مورد استفاده در سطوح شهری بر ایجاد جزیره حرارتی در اقلیم گرم‌وخشک. نامه معماری و شهرسازی، 32(14)، 31-48.
Almulhim, A. I., Al Kafy, A., Ferdous, M. N., Fattah, M. A., & Morshed, S. R. (2024). Harnessing urban analytics and machine learning for sustainable urban development: A multidimensional framework for modeling environmental impacts of urbanization in Saudi Arabia. Journal of Environmental Management, 357, 120705.
Arranz-Paraíso, S., & Arranz-Paraíso, D. (2023). The Extent of New Technologies in Urban Environments: Virtual Reality, Lighting, and Accessibility. In Intersecting Health, Livability, and Human Behavior in Urban Environments (pp. 251-272). Igi Global.
Banerjee, S., Pek, R.X.Y., Yik, S.K., Ching, G.N., Ho, X.T., Dzyuban, Y., Crank, P.J., Acero, J.A., & Chow, W.T. (2024). Assessing impact of urban densification on outdoor microclimate and thermal comfort using ENVI-met simulations for Combined Spatial-Climatic Design (CSCD) approach. Sustainable cities and society, 105, 105302.
Barnstorf, P., Alves, F.B., & do Vale, C.P. (2023). Reflexions on an ENVI-met operation-methodology case study. U. Porto Journal of Engineering, 9(2), 16-99.
Battisti, A., Laureti, F., Zinzi, M., & Volpicelli, G. (2018). Climate mitigation and adaptation strategies for roofs and pavements: A case study at Sapienza University Campus. Sustainability, 10(10), 3788.
Beele, E., Aerts, R., Reyniers, M., & Somers, B. (2024). Spatial configuration of green space matters: Associations between urban land cover and air temperature. Landscape and Urban Planning, 249, 105121.
Behzad, Z., & Guilandoust, A. (2024). Enhancing outdoor thermal comfort in a historic site in a hot dry climate (Case study: Naghsh-e-Jahan Square, Isfahan). Sustainable cities and society, 102, 105209.
Carlucci, S., & Pagliano, L. (2012). A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy and Buildings, 53, 194-205.
Chan, S.Y., & Chau, C.K. (2021). On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable cities and society, 64, 102512.
Chen, X., & He, B.J. (2024). Planning for heat-resilient 15 min-cities: Opportunities, measurement, mechanism, and pathways. Environmental Impact Assessment Review, 105, 107406.
Cheng, Y., Liu, X., Zeng, Z., Liu, S., Wang, Z., Tang, X., & He, B.J. (2022). Impacts of water bodies on microclimates and outdoor thermal comfort: Implications for sustainable rural revitalization. Frontiers in Environmental Science, 10, 940482.
Coccolo, S., Pearlmutter, D., Kaempf, J., & Scartezzini, J.L. (2018). Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort. Urban Forestry & Urban Greening, 35, 91-105.
De Dear, R.J., & Brager, G.S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561.
Eingrüber, N., Korres, W., Löhnert, U., & Schneider, K. (2023). Investigation of the ENVI-met model sensitivity to different wind direction forcing data in a heterogeneous urban environment. Advances in Science and Research, 20, 65-71.
Gachkar, D., Taghvaei, S.H., & Norouzian-Maleki, S. (2021). Outdoor thermal comfort enhancement using various vegetation species and materials (case study: Delgosha Garden, Iran). Sustainable cities and society, 75, 103309.
Gai, Z., Yin, H., Kong, F., Su, J., Shen, Z., Sun, H., Yang, S., Liu, H., & Middel, A. (2025). How does shade infrastructure affect outdoor thermal comfort during hot, humid summers? Evidence from Nanjing, China. Building and environment, 267, 112320.
Gurney, K.R., Kılkış, Ş., Seto, K.C., Lwasa, S., Moran, D., Riahi, K., Keller, M., Rayner, P., & Luqman, M. (2022). Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100. Global Environmental Change, 73, 102478.
Hamdy, M.A., Hamzah, B., Wikantari, R., & Mulyadi, R. (2023). The effect of water and vegetation elements as microclimate modifiers in buildings in hot and humid tropical climates. ARTEKS: Jurnal Teknik Arsitektur, 8(2), 255-270.
Han, D., Zhang, T., Qin, Y., Tan, Y., & Liu, J. (2023). A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. Climate and Development, 15(5), 379-403.
He, X., An, L., Hong, B., Huang, B., & Cui, X. (2020). Cross-cultural differences in thermal comfort in campus open spaces: a longitudinal field survey in China’s cold region. Building and environment, 172, 106739.
Hedquist, B.C., & Brazel, A.J. (2014). Seasonal variability of temperatures and outdoor human comfort in Phoenix, Arizona, USA. Building and environment, 72, 377-388.
Hong, C., Qu, Z., Xu, W., & Gu, Z. (2023). Study on water cooling island effects under different climatic conditions. City and Built Environment, 1(1), 4.
Huang, T., Li, J., Xie, Y., Niu, J., & Mak, C. (2017). Outdoor thermal comfort study in the underneath-elevated-building (UEB) area: on-site measurements and surveys in Hong Kong. Build. Environ., 125, 502-514.
Huang, Z., Cheng, B., Gou, Z., & Zhang, F. (2019). Outdoor thermal comfort and adaptive behaviors in a university campus in China’s hot summer-cold winter climate region. Building and environment, 165, 106414.
Huang, Z., Gou, Z., & Cheng, B. (2020). An investigation of outdoor thermal environments with different ground surfaces in the hot summer-cold winter climate region. Journal of Building Engineering, 27, 100994.
Imran, H.M., Kala, J., Ng, A., & Muthukumaran, S. (2018). Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. Journal of Cleaner Production, 197, 393-405.
Isinkaralar, O. (2024). Discovery of spatial climate parameters and bioclimatic comfort change simulation in Türkiye under socioeconomic pathway scenarios: A basin-scale case study for urban environments. Natural Hazards, 120(2), 1809-1819.
Johari, M., Seydayi, S.E., Nouri, S.H., & Taghdisi, A. (2016). Enhancing Rural-urban Linkages Based on Islamic-Iranian Developmental Pattern in Reaching Social Justice: A Case Study of Shahreza County, Isfahan, Iran. Environmental Management and Sustainable Development, 5(1),158-178.
Knaus, M., & Haase, D. (2020). Green roof effects on daytime heat in a prefabricated residential neighbourhood in Berlin, Germany. Urban Forestry & Urban Greening, 53, 126738.
Li, Y., & Song, Y. (2019). Optimization of vegetation arrangement to improve microclimate and thermal comfort in an urban park. International Review for Spatial Planning and Sustainable Development, 7(1), 18-30.
Liu, Y., Chen, H., Wu, J., Wang, Y., Ni, Z., & Chen, S. (2024). Impact of urban spatial dynamics and blue-green infrastructure on urban heat islands: A case study of Guangzhou using Local Climate Zones and predictive modeling. Sustainable cities and society, 115, 105819.
Maleki, A., & Mahdavi, A. (2016). Evaluation of urban heat islands mitigation strategies using 3dimentional urban micro-climate model ENVI-met. Asian Journal of Civil Engineering (BHRC), 17(3), 357-371.
Middel, A., Lukasczyk, J., & Maciejewski, R. (2017). Sky view factors from synthetic fisheye photos for thermal comfort routing-a case study in Phoenix, Arizona. Urban Plan, 2(1), 19-30.
Namazi, Y., Charlesworth, S., Montazami, A., & Taleghani, M. (2024). The impact of local microclimates and Urban Greening Factor on schools’ thermal conditions during summer: A study in Coventry, UK. Building and environment, 262, 111793
Necira, H., Matallah, M.E., Bouzaher, S., Mahar, W.A., & Ahriz, A. (2024). Effect of Street Asymmetry, Albedo, and Shading on Pedestrian Outdoor Thermal Comfort in Hot Desert Climates. Sustainability, 16(3), 1291.
Niu, J., Hong, B., Geng, Y., Mi, J., & He, J. (2020). Summertime physiological and thermal responses among activity levels in campus outdoor spaces in a humid subtropical city. Science of the Total Environment, 728, 138757.
Ren, J., Shi, K., Li, Z., Kong, X., & Zhou, H. (2023). A review on the impacts of urban heat islands on outdoor thermal comfort. Buildings, 13(6), 1368.
Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar energy, 80(4), 435-447.
Salata, F., Golasi, I., de Lieto Vollaro, R., & de Lieto Vollaro, A. (2016). Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and environment, 96, 46-61.
Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224-240.
Simon, H. (2016). Modeling urban microclimate: development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met. Doctoral dissertation, Universitätsbibliothek Mainz.
Sinsel, T., Simon, H., Ouyang, W., dos Santos Gusson, C., Shinzato, P., & Bruse, M. (2022). Implementation and evaluation of mean radiant temperature schemes in the microclimate model ENVI-met. Urban Climate, 45, 101279.
Su, Y., Wang, C., Li, Z., Meng, Q., Gong, A., Wu, Z., & Zhao, Q. (2024). Summer outdoor thermal comfort assessment in city squares—A case study of cold dry winter, hot summer climate zone. Sustainable cities and society, 101, 105062.
Syafii, N.I., Ichinose, M., Kumakura, E., Jusuf, S.K., Chigusa, K., & Wong, N.H. (2017). Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustainable cities and society, 34, 79-89.
Taghvaei, S.H. (2019). The model of “Fundamental Values and Factors of Landscape” proposed for education and practice of landscape architecture. Conference Proceedings. Ninth Edition (2019) of the International Conference The Future of Education with a Virtual Presentation, Florence, Italy.
Taleghani, M. (2018). The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Clim., 24, 175–184.
Teshnehdel, S., Gatto, E., Li, D., & Brown, R.D. (2022). Improving outdoor thermal comfort in a steppe climate: Effect of water and trees in an urban park. Land, 11(3), 431.
Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2-19.
Wang, Y., de Groot, R., Bakker, F., Wörtche, H., & Leemans, R. (2017). Thermal comfort in urban green spaces: a survey on a Dutch university campus. International journal of biometeorology, 61, 87-101.
Yang, J., Hu, X., Feng, H., & Marvin, S. (2021). Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban Forestry & Urban Greening, 66, 127384.
Zango, M.S., Wah, L.Y., Chyee, D.H., & Dalandi, A. (2018). Validation of ENVI-met software using measured and predicted air temperatures in the Courtyard of Chinese Shophouse Malacca. J Appl Sci Environ Sustain, 4(9), 28-36.
Zare, S., Hasheminezhad, N., Sarebanzadeh, K., Zolala, F., Hemmatjo, R., & Hassanvand, D. (2018). Assessing thermal comfort in tourist attractions through objective and subjective procedures based on ISO 7730 standard: A field study. Urban Climate, 26, 1-9.