Compilation of Cognitive-Spatial Modeling Process in Architecture with Emphasis on Computational and Hypothetical Models

Document Type : Original Article

Authors

1 Ph.D. Candidate in Architecture, College of Fine Arts, University of Tehran, Tehran, Iran

2 Professor, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran

Abstract

Researchers use model and simulation to study mental representations of the environment and gain a precise understanding of the human cognitive system. The complexity of modeling in spatial cognition is, on the one hand, the result of the complexity of the mind and the environment that people understand in different ways, and on the other hand, rooted in the diverse disciplines of cognitive sciences. cognitive-spatial modeling has gotten less attention in architectural studies because of the complexity of the process. Thus, in this field, there is no scientific or comprehensive approach that incorporates the various components of modeling. The purpose of this research is to develop the model of the process of creating two common types of cognitive-spatial models in architecture. The main question is; how to develop a model for the modeling process in spatial cognition that simultaneously relates human, environmental, and time frameworks? The research methodology was logical reasoning, which is accomplished by analyzing the theories of cognitive science and modeling. In the first step, the theoretical and cognitive basics of models are reviewed and two common types of spatial-cognitive modeling are introduced. Then, through logical reasoning and based on temporal, human, and environmental frameworks, a conceptual model for categorizing models is offered to clarify the scientific modeling in spatial cognition studies. Moreover, in the techniques and procedures level, due to the shortcomings of experimental methods in the study of the man-made environment (cost, instrument limitations, social and ethical limitations), behavioral and non-behavioral observation methods are useful measures for the study. Since these approaches cannot directly measure cognition, in order to decrease errors, researchers must employ mixed methods (such as cognitive maps, questionnaires, etc.). These models are made richer by choosing from a wide range of methodological approaches and techniques to cover various aspects of spatial cognition. Finally, a model is introduced for each of the computational and conceptual-hypothetical models, which represents the link between the mentioned frameworks and the modeling process. The findings show that during building cognitive-spatial models, in the choosing theories or the base model and finding the connection between concepts, dealing with temporal, human and mental-environmental components is a priority. Although cognitive studies may support both dynamic and static approaches in this respect, the concept of dynamic systems is more widely recognized in the fields of architecture and urban planning owing to the dynamism of two key variables, i.e., the mind and environment. Additionally, the properties of the individuals and the space under investigation both influences how people know their environment. According to the objectives of the study, the applied model, however, may place greater emphasis on one of the personal or environmental properties when describing how individuals perceive various spaces. Finally, in computational modeling, complex behaviors are simulated through algorithms and the possibility of behavior reproduction is investigated. In conceptual-hypothetical modeling, due to the knowledge of the general public about the environment, deductive-inductive methods that are common in social sciences will be useful.

Keywords

Main Subjects


خنیفر، حسین، و حامد بردبار (1393). درآمدی بر مدل‌سازی در علوم رفتاری. تهران: شرکت انتشارات علمی و فرهنگی.
کرباسی‌زاده اصفهانی، علی، و ماریا حیدریان (1388). مبانی معرفت‌شناسی مدرن. مجله حکمت و فلسفه، 1، 97-122.
کیوی، ریمون، و لوک وان کامپنهود (1370). روش تحقیق در علوم اجتماعی (مترجم: عبدالحسین نیک گهر). تهران: چاپ نوبهار.
گروت، لیندا، و دیوید وانگ (1388). روش‌های تحقیق در معماری (مترجم: علیرضا عینی‌فر). تهران: دانشگاه تهران.
مانتلو، دنیل ر. (1397). روش‌های رفتاری در حوزۀ پژوهش شناخت فضایی. در رابرت گیفورد، روش‌های تحقیق در روان‌شناسی محیط (مترجمان: مینو قره‌بگلو، محمدتقی پیربابایی و زهرا علی‌نام). ۱۴۹-۱۷۰. تبریز: دانشگاه هنر اسلامی تبریز.
 
Allen, G. L. (1997). From Knowledge to Words to Wayfinding: Issues in the Production and Comprehension of Route Directions. In S. C. Hirtle, A. U. Frank (Eds. ), Spatial Information Theory: A Theoretical Basis for GIS  (363-372). Berlin: Springer.
Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive architecture. Cognitive Science, 2 (3), 313-341.
Basso, A., Lisciandra,C., and Marchionni, C. (2017). Hypothetical Models in Social Science. Lorenzo Magnani and Tommaso Bertolotti (Eds.), Springer Handbook of Model-Based Science (413-435). Cham: Springer Nature.
Battersby, S. E., and Montello, D. R. (2009). Area Estimation of World Regions and the Projection of the Global-Scale Cognitive Map. Annals of the Association of American Geographers, 99 (2), 273-291.
Batty, M (2009). Urban Modeling. In Rob Kitchin and Nigel Thrift (Eds.), International Encyclopedia of Human Geography (51-58). Oxford: Elsevier.
Calder, M., Craig, C., Culley, D., de Cani, R., Donnelly, C.A., Douglas, R., Edmonds, B., Gascoigne, J., and Gilbert, N. (2018). Computational modelling for decision-making: where, why, what, who and how. Rouyal Scociety Open Science 5, 1-15. http://dx.doi.org/10.1098/rsos.172096.
Carr, S., and Schissler, D. (1969). The city as a trip: Perceptual selection and memory in the view from the road. Environment and Behavior, 1 (1), 7-35.
Clarke, K.C. (2014). Cellular Automata and Agent-Based Models. In M. M. Fischer and P. Nijkamp (Eds.), Handbook of Regional Science (1217-1233). Berlin Heidelberg: Springer-Verlag.
Dodig-Crnkovic, G. (2008). Empirical modeling & information semantics. Business and Economics, 7 (2), 157-166.
Egenhofer, M. J. (1989). Spatial query languages. Orono: University of Maine.
Emmorey, K., Tversky, B., and Taylor, H. A. (2000). Using space to describe space: Perspective in speech, sign, and gesture. Spatial Cognition and Computation, 2 (3), 157-180.
Freksa, C. (1991). Qualitative spatial reasoning. David M. Mark and Andrew U. Frank (Eds.), Cognitive and Linguistic Aspects of Geographic Space, (361–372). Dordrecht: Kluwer Academic.
Frigg, R., and Hartmann, S. (2020). Models in Science. Edward N. Zalta  (Ed.), The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2020/entries/models-science.
Freundschuh, S.M., and Egenhofer, M.J. (1997). Human conceptions of spaces: Implications for GIS. Transactions in GIS, 2 (4), 361-375.
Golledge, R. G., Smith, T. R., Pellegrino, J. W., Doherty, S., and Marshall, S.P. (1985). A Conceptual Model and Empirical Analysis of Children’s Acquisition of Spatial Knowledge. Journal of Environmental Psychology, 5 (2), 125-152.
Hart, R. (1979). Children’s experience of place. New York: ‎ Irvington.
Hillier, B., and Hanson, J. (1994). The social logic of space. Cambridge: Cambridge University Press.
Hirtle, S. C., and Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13, 208–217.
Hirtle, S. C. (2013). Models of Spatial Cognition. David Waller and Lynn Nadel (Eds.), Handbook of Spatial Cognition, (211-116). Washington, DC: American Psychological Association.
Jansen-Osmann, P., and Wiedenbauer, G. (2004). The influence of turns on distance cognition: New experimental approaches to clarify the route-angularity effect. Environment and Behavior, 36 (6), 790-813.
Kiefer, P., Straub, F., and Raubal, M. (2012). Location-Aware Mobile Eye-Tracking for the Explanation of Wayfinding Behavior. International Conference on Geographic Information Science. Avignon, France. 24-27.
Kuipers, B. (1978). Modeling Spatial Knowledge. Cognitive Science, 2, 129-153.
Lynch, K. (1960). The Image of the City. Cambridge: MIT Press.
Magnani, L., and Bertolotti, T. (2017). Springer Handbook of Model-Based Science. Springer International Publishing.
Manson, S., An, L., Clarke, K. C., Heppenstall, A., Koch, J., Krzyzanowski, B., Morgan, F., et al. (2020). Methodological Issues of Spatial Agent-Based Models. Journal of Artificial Societies and Social Simulation, 23(1). https://escholarship.org/uc/item/23k8q97t.
Mark, D. M. (1993). Human spatial cognition. David Medyckyj-Scott and Hilary M. Hearnshaw (Eds.), Human Factors in Geographical Information Systems, (51-60). London: Belhaven Press.
Marraffa, M., and Paternoster, A. (2017). Models and Mechanisms in Cognitive Science. Lorenzo Magnani and Tommaso Bertolotti (Eds.) Springer Handbook of Model-Based Science, (929-952). Cham: Springer.
McNamara, T. P., Rump, B., and Werner, S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review, 10, 589–595.
Montello, D. R., and Raubal, M. (2013). Functions and Applications of Spatial Cognition. David Waller and Lynn Nadel (Eds.), Handbook of Spatial Cognition, (249-264). Washington, DC: American Psychological Association.
Moore, G.T., and Golledge, R. G. (1976). Environmental Knowing: Theories, Research, and Methods. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, Inc.
Nersessian, N.J., and MacLeod, M. (2017). Models and Simulations. Lorenzo Magnani and Tommaso Bertolotti (Eds.), Springer Handbook of Model-Based Science, (119-137). Cham: Springer.
Passini, R. (1984). Wayfinding in architecture. New York: Van Nostrand Reinhold.
Penn, A. (2001). Space Syntax and Spatial Cognition or why the axial line?. 3rd International Space Syntax Symposium . Atlanta. 11.1-11.17.
Poile, C., and Safayeni, F. (2016). Using Computational Modeling for Building Theory: A Double Edged Sword. Journal of Artificial Societies and Social Simulation, 19(3), 1-8. doi:10.18564/jasss.3137.
Portugali, J., and Haken, H. (1992). Synergetics and cognitive maps. Geoforum, 23 (2), 111-130.
Prezenski, S., Brechmann, A., Wolff, S., and Russwinkel, N. (2017). A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making. Frontiers in Psycholgy, 8, 1-18.
Ritchey, T. (2012). Outline for a Morphology of Modelling Methods, Contribution to a General Theory of Modelling. Acta Morphologica Generalis, 1 (1), 1-20.
Russo, F. (2017). Model-Based Reasoning in the Social Sciences. Lorenzo Magnani and Tommaso Bertolotti (Eds.), Springer Handbook of Model-Based Science, (953-970). Cham: Springer.
Salgado, M., and Gilbert, N. (2013). Agent Based Modelling. Timothy Teo (Eds.), Handbook of Quantitative Methods for Educational Research, (247-265). Rotterdam: Sense Publishers.
Schwartz, N. A. (2017). Nancy Nersessian’s Cognitive-Historical Approach. Lorenzo Magnani and Tommaso Bertolotti  (Eds.), Springer Handbook of Model-Based Science (355-377). Cham: Springer.
Shettleworth, S. J., and Sutton, J. E. (2005). Multiple Systems for Spatial Learning: Dead Reckoning and Beacon Homing in Rats. Journal of Experimental Psychology: Animal Behavior Processes, 31, 125-141.
Smelser, N. J., and Baltes, P. B. (2001). Encyclopedia of Social &Behavioral Sciences. Oxford: Pergamon Press.
Waller, D., and Nadel, L. (2013). Handbook of Spatial Cognition. Washington, DC: American Psychological Association.
Wolbers, T., Hegarty, M., Büchel, C., and Loomis, J. M. (2011). Spatial updating: how the brain keeps track of changing object locations during observer motion. Nature Neuroscience, 11, 1223–1230.
Yeap, W. K., and Jefferies, M. E. (1999). Computing a representation of the local environment. Artificial Intelligence, 107 (2), 265-301.
Yoshioka , J. G. (1942). A Direction-Orientation Study With Visitors at the New York World’S Fair. The Journal of General Psychology, 27, 3-33.