Optimal Parameters of Form and Structure of Rotational Symmetrical Synclastic Shells (RSS) in Nature and Architecture Case Study: Bird Eggshell

Document Type : Original Article

Authors

1 PhD in Architecture, Department of Architecture, Borujerd Branch, Islamic Azad University, Borujerd, Iran

2 Assistant Professor, Department of Architecture, Faculty of Architecture and Urban Planning, University of Art, Tehran, Iran

3 Assistant Professor, Department of Architecture, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran- Invited Assistant Professor, Department of Architecture, Borujerd Branch, Islamic Azad University, Borujerd, Iran

4 Assistant Professor, Department of Architecture, Faculty of Art and Architecture, Bu-Ali Sina University, Hamedan, Iran- Invited Assistant Professor, Department of Architecture, Borujerd Branch, Islamic Azad University, Borujerd, Iran

Abstract

Natural forms and structures have always been a source of human inspiration for the creation of space. The present study focuses on one of the most important sources of inspiration from nature, namely Rotational Symmetrical Synclastic shells (RSS), and deals with the formal and structural optimality of these shells and their role in architecture. The methodology of this research is descriptive-analytical and simulation. It also uses primary sources and case studies in nature, such as bird eggs to analyse the form and structure of natural RSS shells, and to determine how to use their capacities in architecture. To this end, the article first addresses the typology of RSS shells. Then, the formal principles of RSS shells in nature are examined, which include various formal structures. Then, the typology of these shells in past and contemporary architecture is examined, including different types of arches and domes based on compressive or tensile behaviour. Another objective was to study the formal and structural optimality parameters in nature and architecture. It is very important for architects and designers in this field to have data control in order to achieve optimal and innovative forms and structures. Due to the variety of RSS shells, the focus of this research has been on spherical and parabolic examples. In the study of the "circular parabolic" shells, first, the required parameters were defined. The parametric definition of "spherical" and "circular parabolic" surfaces showed that the optimality of the shell surface can be achieved by adjusting parameters. In order to identify the optimality parameters of RSS shells in nature, bird eggs were examined as a case study. Various studies have shown that many parameters are effective in the optimal formation of bird eggs, such as: clutch size, roll factor, Hand Wing Index (HWI), degree of conical or elliptical egg elongation, and structure of the egg, among others. On the other hand, changing in numerical parameters also showed that by increasing the height of the egg, surface optimality in relation to volume can be increased. In examining such natural RSS shells, which are great examples of natural structures, we arrived at hidden rules and parameters. Some of these have been implemented in architecture, while others have not yet been considered. The ones that have generally been implemented are: achieving formal and structural optimality with maximum resistance in large openings, using the least materials and having minimum surface area, reducing resistance to lateral wind forces in minimal formal and structural contact, and having an optimal form in response to environmental and weather conditions. However, the findings show that there are other rules, which should also be considered by architects, such as design and implementation of context-sensitive in-situ shells and prefabricated shells focused on the specificities of each context, and utilizing new technologies to achieve maximum optimization of form and structure in RSS shell architecture. Thus, by examining natural RSS shells, it may be possible to achieve new and more efficient architectural ideas and design processes.

Keywords

Main Subjects


پارسا، سروناز، و فخار تهرانی، فرهاد (1392). نگاهی بر هندسه نظری گنبد و طاق در معماری ایرانی. نخستین همایش فناوری و سازه‌های سنتی با محور گنبدها، تهران.
پیرنیا، محمدکریم (1352). ارمغان‌های ایران به جهان معماری گنبد. مجله هنر و مردم، 136-137، ۲-۷.
تقی‌زاده، کتایون (1385). آموزه‌هایی از سازه‌های طبیعی، درس‌هایی برای معماران. نشریه هنرهای زیبا، 28، ۷۵-۸۴.
تقی‌زاده،کتایون، متینی، محمدرضا، و کاکوئی، الناز (1398). ساختارهای انعطاف‌پذیر؛ راهکاری در جهت کاهش معضلات عملکردی پوسته‌های متحرک. نشریه هنرهای زیبا- معماری و شهرسازی، 24  (2)، 48-39.
خبازی، زوبین (1391). پارادایم معماری الگوریتمیک، (چاپ اول). مشهد: کتابکده کسری.
سالوادوری، ماریو (1374). سازه در معماری (مترجم: محمود گلابچی) (چاپ اول). تهران: مؤسسه انتشارات دانشگاه تهران.
شاهرودی، عباسعلی،گلابچی، محمود، و اربابیان، همایون (1386). بهره‌گیری از طبیعت برای آموزش مؤثر درس ایستایی در رشته معماری در ایران، نشریه هنرهای زیبا، 31 (5)، ۴۷-۵۶.
فرشاد، مهدی (1353). فرم‌های ساختمانی. (چاپ دوم). شیراز: انتشارات دانشگاه پهلوی.
گلابچی، محمود و امیری، مجتبی (1395). عناصر سازه‌ای برای معماران. تهران: مؤسسه انتشارات دانشگاه تهران.
مدی، حسین و ایمانی، مرضیه (1397). فناوری بایومیمیک و الهام از طبیعت. نقش‌جهان - مطالعات نظری و فناوری‌های نوین معماری و شهرسازی، 8 (۱)، 55-47.
معماریان، غلامحسین (1391). معماری ایرانی نیارش (تدوین: هادی صفایی‌پور) جلد اول و دوم. تهران: نغمه نواندیش.
Baxter, A. (2011). Natural Landscape Areas of London and their Natural Signatures. London’s Natural Signatures: The London Landscape Framework.
Chilton, J. (1999). Space Grid Structures. New York: Routledge.
Crespy, S. & You, J. (2017). Cracking the Mystery of Egg Shape. https://vis.sciencemag.org/eggs.
Creswell, K.A.C. (1914). The History and Evolution of the Dome in Persia. Journal  of the Royal Asiatic society of the Great Britain and Ireland, 46, 681- 701.
Feizabadi, M., Bemanian, M., Golabchi, M., and Mirhosseini, S. M. (2013).  Methods of Utilizing Natural Organisms in Technological Architecture. Middle-East Journal of Scientific Research, 13 (3), 379-389.
Farshad, M. (1992). Design and Analisis of Shell Structures (Solid Mechanics and Its Applications (16)). Netherlands: Springer.
Ghyka, M. C. (1979). Esthétique des proportions dans la nature et dans les arts. Editorial Poseidon.
Hartmann, E. (2003). Geometry and Algorithms for Computer Aided Design. Darmstadt: University of Technology Department of Mathematics.
Hass, J.R., Heil, C.D. & Weir, M.D. (2017). Thomas’ Calculus,14th Edition, London: Pearson.
Lampugnani, V. M. (1997). 20th Century Architecture. New York: Thames and Hudson.
Lan, Tien.T. (2005). Space Frame Structures, Structural Engineering Handbook, Ed. Chen Wai-Fah. Boca Raton: CRC Press LLC.
Mansoori, M., Kalantar, N., Creasy, T., and Rybkowski, Z. (2019). Adaptive Wooden Architecture. Designing a Wood Composite with Shape-Memory Behavior. In: Bianconi F., Filippucci M. (eds.) Digital Wood Design. Lecture Notes in Civil Engineering, vol 24. Springer, Cham.
Melaragno, M. (1991). An Introduction to Shell Structures: The Art and Science of Vaulting. New York: Van Nostrand Reinhold.
Minke, G. (2006). Building with Earth, Design and Technology of a Sustainable Architecture. Germany: Birkhäuser- Publisher for Architecture.
Moore, F. (1998). Understanding Structures. United States: McGraw-Hill Education - Europe.
Mytiai, I. S., & Matsyura, A.V. (2019). Mathematical interpretation of artificial ovoids and avian egg shapes (part I). Regulatory Mechanisms in Biosystems.
Nishiyama, Y. (2012). The Mathematics of Egg Shape. BULGARIA, International Journal of Pure and Applied Mathematics, 78 (5), 679-689.
Pottmann, H., Asperl, A., Hofer, M., and Kilian, A. (2007). Architectural Geometry. USA, Pensilvania, Extone: Bentley Institute Press.
Sourin, A.,  and Sourina, O. (2010). Towards Immersive Visualization of Mathematics. scientific visualization. http://sv-journal.org/2010-2/01/.
Stoddard, M. C., Yong, E. H., Akkaynak, D., Sheard, C., Tobias, J., and Mahadevan, L. (2017). Avian egg shape: Form, function and evolution. Science, 6344, 1249-1254.
URL1 : https://www.geogebra.org/m/wTh7KKd3   Date:31 Oct 2016
URL2 : https://mvz.berkeley.edu/mvzegg/  Date:3 May 202