- انصاری، جمال (1366). گچبری دوران ساسانی و تأثیر آن در هنرهای اسلامی. فصلنامه هنر، 13، 318-373.
- بورکهارت، تیتوس (1365). هنر اسلامی، زبان و بیان (مترجم: مسعود رجب نیا). تهران: سروش.
- پوپ، آرتور، و بالتروشایتس، یورگیس (1384). نقوش پیشینهدار (مترجم: ژیلبرت صدیق پور). ژیلبرت صدیقپور.
- سیلوایه، سونیا، دانشجو، خسرو، و فرمهین فراهانی، سعید (1392). هندسه در معماری ایران پیش از اسلام و تجلی آن در معماری معاصر ایران. نقش جهان، 3 (1)، 55-66.
- کیانی، محمد یوسف (1370). تزئینات وابسته به معماری ایران. تهران: سازمان میراث فرهنگی کشور.
- میرزایی، عبدالله (1391). بررسی سیر تکامل اسلیمی در هنر ایران. کتاب ماه هنر، 164، 54-57.
- نصراللهی، فرشاد (1390). ضوابط معماری و شهرسازی کاهش دهنده مصرف انرژی ساختمانها. تهران: نشست کمیته ملی انرژی ایران.
- ویلسون، آوا (1388). طرحهای اسلامی (مترجم: محمدرضا ریاضی). تهران: سمت.
- Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., & Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature. International Journal of Sustainable Built Environment, 5 (1), 1-11.
- Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., & Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive facade systems. Energy and Buildings, 179, 165-182.
- Bian, Y., Leng, Y., & Ma, Y. (2018). A proposed discomfort glare evaluation method based on the concept of ‘adaptive zone’. Building and Environment, 143, 306-317.
- Carlucci, S., Causone, F., De Rosa, F., & Pagliano, L. (2015). A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable and Sustainable Energy Reviews, 47, 1016-1033.
- CEN (2011). EN 12464-1: Light and lighting-lighting of work places, part 1: indoor work places. Brussels, Belgium: CEN.
- Choi, S. J., Lee, D. S., & Jo, J. H. (2017). Lighting and cooling energy assessment of multi-purpose control strategies for external movable shading devices by using shaded fraction. Energy and Buildings, 150, 328-338.
- Eltaweel, A., & Su, Y. (2017). Parametric design and daylighting: a literature review. Renewable and Sustainable Energy Reviews, 73, 1068–1103.
- Hammad, F. (2010). The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings, 82, 1888-1895.
- Hassan, A., Abdin, A., & Ezzeldin, S. (2017). Parallel Parametric Simulation for Optimizing Non-Conventional Solar Screens: An Approach for Balancing Daylight and Thermal Performance in Hot Arid Climates. International Conference for Sustainable Design of the Built Environment-SDBE London, 257-268.
- Kalogirou, A. S. (2015). Building integration of solar renewable energy systems towards zero or nearly zero energy buildings. International Journal of Low-Carbon Technelogy, 10 (4), 379-385.
- Kirimtat, A., Koyunbaba, B., Chatzikonstantinou, I., & Sariyildiz, S. (2016). Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews, 53, 23-49.
- Kontovourkis, O., Michael, A., Alexandrou, K., & Vassiliades, C. (2015). Lighting performance simulation and adaptive control of an advanced building skin based on human behaviour inputs. 10th International Conference On Advanced Building Skins, Bern Switzerland, 1340-1349.
- Loonen, R., Trčka, M., Cóstola, D., & Hensen, J. (2013). Climate adaptive building shells: state-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483-493.
- Mahmoud, A. H. A., & Elghazi, Y. (2016). Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns. Solar Energy, 126, 111-127.
- Mardaljevic, J., Heschong, L., & Lee, E. (2009). Daylight metrics and energy savings. Lighting Research and Technology, 41, 261–283.
- Michael, A. (2012). Natural lighting in the indoor environment. In A. M_endez Vilas (Ed.), Fuelling the Future: Advances in Science and Technologies for Energy Generation, Transmission and Storage. Florida, USA: Brown Walker.
- Michael, A., Eftychi, M., & Pattichi, E. (2015). Innovative integrated concept for an environmentally friendly and energy efficient building envelope. The 10th International Conference On Advanced Building Skins, Bern Switzerland, 1360-1369.
- Michael, A. G., Alexandrou, K. C., Konatzii, P. G., & Kalli, A. K. (2016). An environmental renovation strategy based on adaptive control optimisation of a modular light regulating façade system. The 6th International Conference On Harmonisation between Architecture and Nature, Eco-Architecture, Alicante, Spain, 142-153.
- Michael, A., Gregoriou, S., & Kalogirou, S. A. (2018). Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings. Renewable Energy, 115, 620-633
- Palmero-Marrero, A. I., & Oliveira, A. C. (2010). Effect of louver shading devices on building energy requirements. Applied Energy, 87 (6), 2040-2049.
- Reinhart, C. F., Jakubiec, J. A., & Ibarra, D. (2013). Definition of a reference office for standardized evaluations of dynamic façade and lighting technologies. The 13th Conference of International Building Performance Simulation Association, Chambery, France, 3645-3652.
- Reinhart, C. F., & Wienold, J. (2012). The daylighting dashboard: A simulation-based design analysis for daylit spaces. Building and Environment, 46, 386-396.
- Tabadkani, A., Valinejad Shoubi, M., Soflaei, F., & Banihashemi, S. (2019). Integrated parametric design of adaptive facades for user's visual comfort. Automation in Construction, 106, 1-19.
- USGBC (2015). Leadership in Energy and Environmental Design (LEED). U.S: Green Building Council.
- Xue, P., Mak, C., & Huang, Y. (2016). Quantification of luminous comfort with dynamic daylight metrics in residential buildings. Energy and Buildings, 117, 99-108.