آزموده، مریم (1400). چگونگی عملکرد گیاهان در تعدیل پارامترهای مؤثر بر آسایش حرارتی در فضای شهری نمونه پژوهش: دیوار سبز شهری در تهران. جغرافیا و برنامهریزی محیطی، 32(3)، 67-80.
آزموده، مریم و حیدری، شاهین (1396). تأثیر دیوارهای سبز شهری بر کاهش دمای خرداقلیمها و اثر جزیره گرمایی شهری. علوم و تکنولوژی محیط زیست، 19(5)، 606-597.
درگاهیان، فاطمه و رضایی، غلامحسین (1393). بررسی شرایط سینوپتیکی و بیوکلیماتولوژی شاخص گرما با استفاده از سیستم اطلاعات جغرافیایی در ایستگاههای ساحلی و دریایی جنوب و اثرات آن برروی سلامت انسان. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی، 23(91)، 43-54.
Acero, J. A., Koh, E. J. Y., Li, X. X., Ruefenacht, L. A., Pignatta, G., & Norford, L. K. (2019). Thermal impact of the orientation and height of vertical greenery on pedestrians in a tropical area. Building Simulation, 12(6), 973–984. https://doi.org/10.1007/s12273-019-0537-1
Coma, J., Pérez, G., de Gracia, A., Burés, S., Urrestarazu, M., & Cabeza, L. F. (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, 111, 228–237. https://doi.org/10.1016/j.buildenv.2016.11.014
Cui, D., Zhang, Y., Li, X., Yuan, L., Mak, C. M., & Kwok, K. (2022). Effects of different vertical façade greenery systems on pedestrian thermal comfort in deep street canyons. Urban Forestry & Urban Greening, 72, 127582. https://doi.org/10.1016/J.UFUG.2022.127582
d’Ambrosio Alfano, F. R., Palella, B. I., & Riccio, G. (2011). Thermal environment assessment reliability using temperature -Humidity indices. Industrial Health, 49(1), 95-106. https://doi.org/10.2486/indhealth.MS1097
Dunnett, N., & Kingsbury, N. (2008). Planting green roofs and living walls (Rev. ed.). Timber Press.
Galagoda, R. U., Jayasinghe, G. Y., Halwatura, R. U., & Rupasinghe, H. T. (2018). The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban Forestry & Urban Greening, 34, 1–9. https://doi.org/10.1016/j.ufug.2018.05.008
Ghalhari, G. F., Heidari, H., Dehghan, S. F., & Asghari, M. (2022). Consistency assessment between summer simmer index and other heat stress indices (WBGT and Humidex) in Iran’s climates. Urban Climate, 43, 101178. https://doi.org/10.1016/j.uclim.2022.101178
Hunter, A. M., Williams, N. S. G., Rayner, J. P., Aye, L., Hes, D., & Livesley, S. J. (2014). Quantifying the thermal performance of green façades: A critical review. Ecological Engineering 63, 102–113. https://doi.org/10.1016/j.ecoleng.2013.12.021
Jim, C. Y. (2015). Greenwall classification and critical design-management assessments. Ecological Engineering, 77, 348–362. https://doi.org/10.1016/j.ecoleng.2015.01.021
Katsoulas, N., Antoniadis, D., Tsirogiannis, I. L., Labraki, E., Bartzanas, T., & Kittas, C. (2017). Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations. International Journal of Biometeorology, 61(5), 943–956. https://doi.org/10.1007/s00484-016-1274-0
Lukić, M., Pecelj, M., Protić, B., & Filipović, D. (2019). An evaluation of summer discomfort in niš (Serbia) using humidex. Journal of the Geographical Institute Jovan Cvijic SASA, 69(2). https://doi.org/10.2298/IJGI1902109L
Manso, M., & Castro-Gomes, J. (2015). Green wall systems: A review of their characteristics. Renewable and Sustainable Energy Reviews, 41, 863–871. https://doi.org/10.1016/j.rser.2014.07.203
Medl, A., Mayr, S., Rauch, H. P., Weihs, P., & Florineth, F. (2017). Microclimatic conditions of ‘Green Walls’, a new restoration technique for steep slopes based on a steel grid construction. Ecological Engineering, 101, 39–45. https://doi.org/10.1016/j.ecoleng.2017.01.018
Moghaddam, F. B., Mir, J. M. F., Yanguas, A. B., Delgado, I. N., & Dominguez, E. R. (2020). Building orientation in green facade performance and its positive effects on urban landscape: Case study of an urban block in Barcelona. Sustainability, 12(21), 9273. https://doi.org/10.3390/SU12219273
Mohammad, P. W. Q. (2024). Comparing existing heat wave indices in identifying dangerous heat wave outdoor conditions. Nexus, 1(3), 1–7.
Morakinyo, T. E., Lai, A., Lau, K. K. L., & Ng, E. (2019). Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening, 37, 42–55. https://doi.org/10.1016/j.ufug.2017.11.010
Oquendo-Di Cosola, V., Olivieri, F., & Ruiz-García, L. (2022). A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renewable and Sustainable Energy Reviews, 162, 112463. https://doi.org/10.1016/j.rser.2022.112463
Ottelé, M., & Perini, K. (2017). Comparative experimental approach to investigate the thermal behaviour of vertical greened façades of buildings. Ecological Engineering, 108, 152–161. https://doi.org/10.1016/j.ecoleng.2017.08.016
Ottelé, M., Perini, K., Fraaij, A. L. A., Haas, E. M., & Raiteri, R. (2011). Comparative life cycle analysis for green façades and living wall systems. Energy and Buildings, 43(12), 3419–3429. https://doi.org/10.1016/j.enbuild.2011.09.010
Palermo, S. A., & Turco, M. (2020). Green Wall systems: Where do we stand? IOP Conference Series: Earth and Environmental Science, 410(1), 012013. https://doi.org/10.1088/1755-1315/410/1/012013
Pérez, G., Coma, J., Martorell, I., & Cabeza, L. F. (2014). Vertical greenery systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews, 39, 139–165. https://doi.org/10.1016/j.rser.2014.07.055
Perini, K., Ottelé, M., Haas, E. M., & Raiteri, R. (2011). Greening the building envelope, facade greening and living wall systems. Open Journal of Ecology, 1(1), 1–8. https://doi.org/10.4236/oje.2011.11001
Rahman, A., Wang, C., Rahim, A. M., Loo, S. C., & Miswan, N. (2014). Vertical greenery systems (VGS) in urban tropics. Open House International, 39(4), 42–52. https://doi.org/10.1108/OHI-04-2014-B0005
Raji, B., Tenpierik, M. J., & Van Den Dobbelsteen, A. (2015). The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 45, 610–623. https://doi.org/10.1016/j.rser.2015.02.011
Salamone, F., Belussi, L., Danza, L., Ghellere, M., & Meroni, I. (2017). How to define the urban comfort in the era of smart cities through the use of the do-it-yourself approach and new pervasive technologies. Proceedings of the 4th Electronic Conference on Sensors and Applications. https://doi.org/10.3390/ecsa-4-04921
Sánchez-Reséndiz, J. A., Ruiz-García, L., Olivieri, F., & Ventura-Ramos, E. (2018). Experimental assessment of the thermal behavior of a living wall system in semi-arid environments of central Mexico. Energy and Buildings, 174, 148–158. https://doi.org/10.1016/j.enbuild.2018.05.060
Shafiee, E., Faizi, M., Yazdanfar, S. A., & Khanmohammadi, M. A. (2020). Assessment of the effect of living wall systems on the improvement of the urban heat island phenomenon. Building and Environment, 178, 106923. https://doi.org/10.1016/j.buildenv.2020.106923
Solera Jimenez, M. (2018). Green walls: a sustainable approach to climate change, a case study of London. Architectural Science Review, 61(1–2), 48–57. https://doi.org/10.1080/00038628.2017.1405789
International Organization for Standardization (ISO). (1998). ISO 7726: Ergonomics of the thermal environment — Instruments for measuring physical quantities. ISO.
Tabatabaei, S. S., & Fayaz, R. (2023). The effect of facade materials and coatings on urban heat island mitigation and outdoor thermal comfort in hot semi-arid climate. Building and Environment, 243, 110701. https://doi.org/10.1016/j.buildenv.2023.110701
Wahba, S., Kamil, B., Nassar, K., & Abdelsalam, A. (2019). Green envelope impact on reducing air temperature and enhancing outdoor thermal comfort in arid climates. Civil Engineering Journal (Iran), 5(5), 1269–1281. https://doi.org/10.28991/cej-2019-03091317
Wong, N. H., Kardinal Jusuf, S., Aung La Win, A., Kyaw Thu, H., Syatia Negara, T., & Xuchao, W. (2007). Environmental study of the impact of greenery in an institutional campus in the tropics. Building and Environment, 42(8), 2949-2970. https://doi.org/10.1016/j.buildenv.2006.06.004
Wouters, H., Keune, J., Petrova, I. Y., van Heerwaarden, C. C., Teuling, A. J., Pal, J. S., de Arellano, J. V. G., & Miralles, D. G. (2022). Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Science Advances, 8(1), eabe6653. https://doi.org/10.1126/sciadv.abe6653
Yang, F., Yuan, F., Qian, F., Zhuang, Z., & Yao, J. (2018). Summertime thermal and energy performance of a double-skin green facade: A case study in Shanghai. Sustainable Cities and Society, 39, 43–51. https://doi.org/10.1016/J.SCS.2018.01.049
Zamanian, Z., Sedaghat, Z., Hemehrezaee, M., & Khajehnasiri, F. (2017). Evaluation of environmental heat stress on physiological parameters. Journal of Environmental Health Science and Engineering, 15(24), 1-8. https://doi.org/10.1186/s40201-017-0286-y