A study on the performance of photovoltaic Trombe wall in Mashhad residential buildings

Document Type : Original Article

Authors

1 M. A. in Architecture and Energy, Department of Architectural Technology, Faculty of Architecture and Urban Planning, Iran University of Art, Tehran, Iran

2 Professor, Department of Architectural Technology, Faculty of Architecture and Urban Planning, Iran University of Art, Tehran, Iran

Abstract

Recently, new combinations of passive solar systems are introduced to enhance their performance. Trombe wall is one of the popular passive solar systems which has been studied in different forms and in combination with various materials. The aim of the current research is to investigate the Trombe photovoltaic wall in residential buildings in Mashhad. The study was carried out using energy simulation by Energy Plus software. The vents of the Trombe wall are open from eight in the morning to four in the afternoon and closed for the rest of the day. Brick and concrete Trombe walls with photovoltaic coating panels are studied in three different positions, with varying air gaps, and different vents over the whole of a year. The variables are simulated in an integrated way. First, two rooms with 20-centimeter-thick brick and concrete Trombe walls were considered. Then, the dimensions of the vents (18% of the Trombe wall surface and 3/20 of the Trombe wall height), air gap (0.1 meters) and with different photovoltaic coverages (two and four square meters) were attached on the mass wall. In the next stage, by keeping the size of the vents fixed (18% of the surface of the Trombe wall) and changing the air gap (0.05 meters) the simulation was performed. Subsequently, the performance of photovoltaic panels on the glass and in the air gap were simulated. The dimensions of the room have been selected according to the dimensions of a living room in a typical residential building in Mashhad. The results show that for a room with a volume of 120 cubic meters with brick and concrete Trombe wall and 18% vent area, an air gap of 0.05 meters, and a coverage area of four square meters of photovoltaic panels, the received heat, electricity production, and thermal comfort significantly increase. The amount of received heat and electricity production are 257652.3, 307963.6, and 1975482 kilojoules, respectively. In October, thermal comfort was rated as cold. The heat received by the concrete Trombe wall is more than that of the brick one. As the coverage of the photovoltaic panels on the Trombe wall increased, the received heat and the temperature of the room decreased. Conversely, the greater the surface of the vents, the more heat is received in the room and the temperature of the room increases. The temperature of the inner surface of the photovoltaic panels and the heat received due to internal convection increases from bottom to the top of the Trombe wall. Photovoltaic panels on the massive wall perform better than those on the glass or in the air gap in terms of received heat, thermal comfort and electricity production. Therefore, it is suggested that photovoltaic panels be positioned on the massive wall, outer glass, and blind slats, respectively during the cold period of the year, while it would be the opposite for the hot period of the year.

Keywords

Main Subjects


رضیئی، طیب (۱۳۹۶). منطقه‌‌بندی اقلیمی ایران به روش کوپن- گایگر و بررسی جابه‌‌جایی مناطق اقلیمی کشور در سده‌‌ بیستم. فیزیک زمین و فضا، 43 (2)، 419- 439.
شمعی، فائزه و باقری سبزوار، هادی (۱۴۰۰). گونه‌‌شناسی خانه‌‌های بافت جدید شهر مشهد. هفتمین کنگرۀ سالانه بین‌‌المللی عمران، معماری و توسعه شهری، تهران. https://civilica.com/doc/1374443.
طاهری، زهرا، عباسپور فرد، محمدحسین، طبسی‌‌زاده، محمد، و ابوترابی زارچی، حسین (۱۳۹۲). تعیین شیب و جهت بهینه نصب سیستم‌‌های خورشیدی در شهر مشهد. دومین همایش ملی انرژی‌‌های نو وپاک، همدان. https://civilica.com/doc/277102.
فرنود، فاطمه و محمودی زرندی، مهناز (۱۳۹۴). معرفی سیستم دیوار ترومب فتوولتاییک با هدف کارکرد گرمایش بهینه ساختمان.  اولین همایش ملی توسعۀ پایدار شهری، تهران.
کلانتری، محسن و بهبهانی‌‌نیا، علی (۱۳۹۳). مدل‌‌سازی گذرای دیوار ترومب فتوولتاییک همراه با ذخیره‌‌سازی توسط مواد تغییر فازدهنده. رساله برای دریافت درجه کارشناسی ارشد مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی.
مقررات ملی ساختمان ایران، مبحث نوزدهم، صرفه‌‌جویی در مصرف انرژی (۱۳۹۹). (ویرایش چهارم). تهران:  وزارت راه و شهرسازی، مرکز تحقیقات راه، مسکن و شهرسازی، دفتر تدوین مقررات ملی ساختمان.
 
Abdullah, A.A., Attulla, F.S., Ahmed, O. K., & Algburi, S. (2022a). Effect of cooling method on the performance of PV/Trombe wall: Experimental assessment. Thermal Science Engineering Progress, 30, 101273-101283. https://doi.org/10.1016/j.tsep.2022.101273.
 Abdullah, A.A., Atallah, F.S., Algburi, S., & Ahmed, O.K. (2022b). Impact of a reflective mirrors on photovoltaic/trombe wall performance: Experimental assessment. Results in Engineering, 16, 100706-100716. https://doi.org/10.1016/j.rineng.2022.100706.
Ahmed, O.K., Hamada, K.I., & Salih, A.M. (2019). Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: an experimental and theoretical study. Energy, 171, 14-26. https://doi.org/10.1016/j.energy.2019.01.001.
Bruno, R., Bevilacqua, P., Cirone, D., Perrella, S., & Rollo, A.A. (2022). Calibration of the Solar Load Ratio Method to Determine the Heat Gain in PV-Trombe Walls. Energies, 15(1), 328-343. https://doi.org/10.3390/en15010328.
Fung, T.Y.Y., & Yang, H. (2008). Study on the thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy and Buildings. 40(3), 341-350. https://doi.org/10.1016/j.enbuild.2007.03.002.
Hegazy, A. (2000). Comparative study of the performance of four photovoltaic/thermal solar air collectors. Energy Conversion and Management, 41(8), 861-881. http://dx.doi.org/10.1016/S0196-8904(99)00136-3.
Hu, Z. He, W. Ji, J. Hu, D. Lv, S. Chen, H. Shen, Z. (2017). Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system. Applied Energy, 194, 81-93. https://doi.org/10.1016/j.apenergy.2017.02.018.
Irshad, K., Algarni, S., Islam, N., Rehman, S., Zahir, M.H., Pash, A.A., & Pillai, S.N. (2022). Parametric analysis and optimization of a novel photovoltaic trombe wall system with venetian blinds: Experimental and computayional study. Case Studies in Thermal Engineering, 34, 101958-101971. https://doi.org/10.1016/j.csite.2022.101958.
Irshad, K., Habib, k., & Thirumalaiswamy, N. (2015). Performance evaluation of PV-Trombe wall for sustainable building development. Procedia CIRP, 26, 624-629. http://doi.org/10.1016/j.procir.2014.07.116.
Islam, N., Irsha, K., Zahir, M. H., & Islam, S. (2021). Numerical and experimental study on the performance of a photovoltaic Trombe wall system with venetian blinds. Energy, 218, 119542-119557. https://doi.org/10.1016/j.energy.2020.119542.
Jiang, B., Jie, J., & Yi, H. (2008). The influence of PV coverage ratio on the thermal and electrical performance of photovoltaic-Trombe wall. Renewable Energy, 33(11), 2491-2498. https://doi.org/10.1016/j.renene.2008.02.001.
Jie, J., Hua, Y., Wei, H., Gang, P., Jiangping, L.C., & Bin, J. (2007). Modeling of a novel Trombe wall with PV cells. Building and Environment, 42(3), 1544-1552. https://doi.org/10.1016/j.buildenv.2006.01.005.
Ji, J., Yi, H., He, W., & Pei, G. (2007). PV-Trombe wall design for buildings in composite climates. Journal of  Solar Energy Engineering, 129(4), 431-437. https://doi.org/10.1115/1.2770751.
Lin, Y., Ji, J., Zhou, F., Ma, Y., Luo, K., & Lu. X. (2019). Experimental annumerical study on the performance of a built-middle PV Trombe wall system. Energy and Buildings, 200, 47-57. https://doi.org/10.1016/j.enbuild.2019.07.042.
Lin, Y., Zhong, S., Yang, W., Hao, X., & Li, C.Q. (2021). Multi-objective design optimization on building integrated photovoltaic with Trombe wall and phase change material based on life cycle cost and thermal comfort. Sustainable Energy Technologies and Assessments, 46, 101277-101291. https://doi.org/10.1016/j.seta.2021.101277.
Kaya, E.S., Aksel, M., Yigit, S., & Acikara, T. (2021). A numerical study on the effect of vent/wall area ratio on Trombe wall thermal performance. Engineering Sustainability, 174(5), 224-234. https://doi.org/10.1680/jensu.20.00064.
Koyunbaba, K.B., & Yilmaz, Z. (2012). The comparison of Trombe wall systems with single glass, double glass, and PV panels. Renewable Energy, 45, 111-118. https://doi.org/10.1016/j.renene.2012.02.026.
Liping, W., & Anguri, L. (2006). A numerical study of Trombe wall for enhancing stack ventilation in buildings. The 23rd International Conference on Passive and Low Energy Architecture, Geneva.
Peng, J., Lu, l., Yang, H., & Han, J. (2013). Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade. Applied Energy, 112, 646-656.
Rabani, M., Kalantar, V., & Rabani, M. (2017). Heat transfer analysis of a Trombe wall with a projecting channel design. Energy, 134, 943-950. https://doi.org/10.1016/j.energy.2017.06.066.
Romero, R.L., Sanchez, R.J., Guerrero, D.M., Molina, F.J.L., & Alvarez, D.S. (2018). Mitigating energy poverty: potential contributions of combining PV and building thermal mass storage in low-income households. Energy Conversion Management, 173, 65-80. https://doi.org/10.1016/j.enconman.2018.07.058.
Sun, W., Ji, j., Lou, C., & He, W. (2011). Performance of PV-Trombe wall in winter correlated with south façade design. Applied Energy, 88(1), 224-231. http://dx.doi.org/10.1016/j.apenergy.2010.06.002.
Taffesse, F., Verma, A., Singh, S., & Tiwari, G.N. (2016). Periodic modeling of the semi-transparent photovoltaic thermal-Trombe wall (SPVT-TW). Solar Energy, 135, 265-273. http://dx.doi.org/10.1016/j.solener.2016.05.044.
Vats, K., Mishra, R.K., & Tiwari, A. (2012). A comparative study for a building integrated semi-transparent photovoltaic thermal (BISPVT) system integrated into the roof with and without duct. Journal of Fundamentals of Renewable Energy and Applications, 2, 1-4.
Xu, X., & Su, Y. (2013). Modeling of natural ventilation in the built-in photovoltaic-Trombe wall. Applied Mechanics and Materials, 448-453, 1537-1541. https://doi.org/10.4028/www.scientific.net/AMM.448-453.1537.
URL1: Climate.onebuilding.org/WMO_Region_2_Asia/IRN_Iran/index.html.