Investigating the behavior of wind flow and Particulate Matter (PM2.5, PM10) around building block skins in the residential context of Asalouyeh detailed pla

Document Type : Original Article

Authors

1 Ph.D. Candidate, Department of Architecture, Faculty of Art and Architecture, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2 Associate Professor, Department of Architecture, School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran

3 Associate Professor, Department of Architecture, Faculty of Art and Architecture, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

Air pollution negatively affects people's health and the economies of countries. Air pollutants can be categorized into three groups: Particulate Matter (PM), Volatile Organic Compounds, and microorganisms. Particulate Matter is the most important air pollutant, especially in major cities worldwide. Particulate Matter is classified into three groups according to their size: large particles (with a diameter between 2.5-10 microns), fine particles (with a diameter between 0.1-2.5 microns), and ultrafine particles (with a diameter between 0.1 microns and less). The wind flow behavior is an important factor in determining the particle concentrations in urban spaces. On the other hand, the urban geometry affects the wind velocity and consequently the outdoor air quality. Therefore, the proper design of urban context can be beneficial in reducing the impact of air pollution. However, this influence is often overlooked in the guidelines. Outdoor air quality is monitored by measuring particle concentrations and atmospheric parameters and the effect of the context on the dispersion of pollutants is not taken into account. Additionally, there are only a few urban air quality monitoring locations. The concentration of some pollutants (including PM) is determined in these monitoring stations. Therefore, they do not provide sufficient and comprehensive data to control urban air pollution. The Computational fluid dynamics analysis can be used to evaluate the wind flow behavior and pollutant dispersion and as a result, predict the urban air quality. This research aimed to study the behavior of wind flow and PM around buildings at different heights, street canyons, and building sides in a part of the residential context of Asalouyeh City. Accordingly, it investigated the effect of wind flow behavior on particle dispersion as well as the effect of height, and street and building orientation on wind flow behavior and PM dispersion. A section of the residential context in a high-density area was selected as the case study. The wind velocity, pressure, turbulence, flow pathlines, PM velocity and concentration, and particle tracks were defined at ground level, at different heights, in streets aligned with the wind direction and perpendicular to it, and on the windward and leeward side faces using CFD simulation in Ansys-Fluent 2021. An area of 129276 square meters with a length of 378 meters was simulated as a wind tunnel. Findings showed that the buildings act as a windbreak and cause wind velocity to decrease significantly in the leeward side face. As the height increased, resulting in higher wind velocity and turbulence, the length of the wind shadow decreased in the leeward side face. At higher altitudes, as the wind joined the free stream, flow turbulence was reduced. Accumulation of massless particles was observed in the leeward side face in the wind shadow area. The highest and lowest PM concentrations were observed in the windwards and the wind shadow, respectively. Therefore, the PM concentrations follow the wind velocity. Findings can be useful in studying outdoor air quality, as well as evaluating thermal comfort and choosing materials according to wind loads in urban spaces.

Keywords

Main Subjects


پژوهشکده محیط‌زیست، مرکز تحقیقات آلودگی هوا (1397). ذرّات معلق هوا. بازیابی‌شده در 14 تیر، 1402 از:
https://ier.tums.ac.ir/%D8%B0%D8%B1%D8%A7%D8%AA-%D9%85%D8%B9%D9%84%D9%82-%D9%87%D9%88%D8%A7
رضایی حریری، محمدتقی، نجف‌خسروی، شیوا و سعادت‌جو، پریا (1395). بررسی تأثیر مقطع طولی ساختمان‌های بلندمرتبه بر رفتار باد در پیرامون بنا. نامه معماری و شهرسازی، 9(17)، 61-77. doi: 10.30480/aup.2016.321
- زبردست، اسفندیار و ریاضی، حسین (1394). شاخص‌های محیط انسان‌ساخت و تأثیرات آن بر آلودگی هوا (مطالعه موردی: محدوده پیرامونی ایستگاه سنجش کیفیت هوا در شهر تهران). هنرهای زیبا: معماری و شهرسازی، 20(1)، 55-66. doi: 10.22059/jfaup.2015.56371
قیابکلو، زهرا (1395). مبانی فیزیک ساختمان 4: سرمایش غیرفعال. تهران: انتشارات جهاد دانشگاهی.
کمیجانی، فرشته و ناهید، شهرزاد (1397). روند تغییرات الگوی باد در خلیج فارس. پژوهش‌‌های اقلیمشناسی، 35، 83-100.
نادری‌زاده، زینب خادمی، حسین، و ایوبی، شمس‌اله (1395). تعیین غلظت و میزان آلودگی فلزات سنگین در ریزگردهای بخشی از استان بوشهر. پژوهشهای حفاظت آب و خاک، 23(3)، 171- 187. .doi: 10.22069/jwfst.2016.3192
نادری‌زاده، زینب، ایوبی، شمس‌اله، و خادمی، حسین (1395). ارزیابی غلظت و میزان آلودگی فلزات سنگین در گردوغبار اتمسفری مناطق شهری و صنعتی استان بوشهر، محیط زیست طبیعی، 69(2)، 531 – 548. doi: 10.22059/jne.2016.59763.
وزارت راه و شهرسازی، اداره کل راه و شهرسازی استان بوشهر (1391). طرح تفصیلی شهر عسلویه: دفترچه ضوابط و مقررات ساختمانی.
 
Abdollahzadeh, N., & Biloria, N. (2021). Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Frontiers of Architectural Research, 10(2), 394-409. doi:https://doi.org/10.1016/j.foar.2020.11.006.
ASHRAE. (2009). ASHRAE Handbook, Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers.
Badach, J., Wojnowski, W., & Gębicki, J. (2023). Spatial aspects of urban air quality management: Estimating the impact of micro-scale urban form on pollution dispersion. Computers, Environment and Urban Systems, 99, 101890. doi:https://doi.org/10.1016/j.compenvurbsys.2022.101890.
Behrooz, R. D., Mohammadpour, K., Broomandi, P., Kosmopoulos, P. G., Gholami, H., & Kaskaoutis, D. G. (2022). Long-term (2012–2020) PM10 concentrations and increasing trends in the Sistan Basin: the role of Levar wind and synoptic meteorology. Atmospheric Pollution Research, 13(7), 101460. doi:https://doi.org/10.1016/j.apr.2022.101460.
Chatzidimitriou, A., & Yannas, S. (2017). Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable cities and society, 33, 85-101. doi:https://doi.org/10.1016/j.scs.2017.05.019.
Cichowicz, R., Wielgosiński, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry, 77(1-2), 35-48. doi:https://doi.org/10.1007/s10874-020-09401-w.
Clipson, C. (1993). Simulation for planning and design: A review of strategy and technique. Environmental simulation: Research and policy issues, 23-57. doi:https://doi.org/10.1007/978-1-4899-1140-7_2.
Cong, X., Wang, H., & Huang, J. (2022). Urban Management in the Dynamic Relationship between the Occurrence of Environmental Pollution Accidents and Economic Development in China. Journal of Environmental and Public Health, 2022, 3751028. doi:https://doi.org/10.1155/2022/3751028.
Dirksen, M., Ronda, R., Theeuwes, N., & Pagani, G. (2019). Sky view factor calculations and its application in urban heat island studies. Urban Climate, 30, 100498. doi:https://doi.org/10.1016/j.uclim.2019.100498.
Dominick, D., Latif, M. T., Juahir, H., Aris, A. Z., & Zain, S. M. (2012). An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustainable Environment Research, 22, 305-315.
Dooley, K. (2002). Simulation research methods. In J. Baum (Ed.), Companion to Organizations (829-848). London: Blackwell.
Duffney, P., Stanek, L., & Brown, J. (2023). Air pollution: Sources, regulation, and health effects. Encyclopedia of Toxicology (Fourth Edition), 1, 215-228. doi:https://doi.org/10.1016/B978-0-12-824315-2.00754-5.
EPA. (2023a). Outdoor Air Quality: Three Categories of Indicators. Report on the Environment.  Retrieved January 1, 2024 from https://www.epa.gov/report-environment/outdoor-air-quality#:~:text=These%20six%20pollutants%20(carbon%20monoxide,human%20health%20and%20the%20environment.
EPA. (2023b). Particulate Matter (PM) Basics.   Retrieved January 15, 2024 from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics.
Fathi, S., Sajadzadeh, H., Mohammadi Sheshkal, F., Aram, F., Pinter, G., Felde, I., & Mosavi, A. (2020). The role of urban morphology design on enhancing physical activity and public health. International journal of environmental research and public health, 17(7), 2359. doi:https://doi.org/10.3390/ijerph17072359.
Gharbi, I., Kammoun, A., & Kefi, M. K. (2023). To what extent does renewable energy deployment reduce pollution indicators? the moderating role of research and development expenditure: Evidence from the top three ranked countries. Frontiers in Environmental Science, 11, 1096885. doi:https://doi.org/10.3389/fenvs.2023.1096885.
Ghasemi, M., Toghraie, D., & Abdollahi, A. (2020). An experimental study on airborne particles dispersion in a residential room heated by radiator and floor heating systems. Journal of Building Engineering, 32, 101677. doi:https://doi.org/10.1016/j.jobe.2020.101677.
Groat, L. N., & Wang, D. (2013). Architectural research methods. New York: John Wiley & Sons.
Grondzik, W. T., & Kwok, A. G. (2019). Mechanical and electrical equipment for buildings. Hoboken, New Jersey: John wiley & sons.
Han, Y., Lee, J., Haiping, G., Kim, K.-H., Wanxi, P., Bhardwaj, N., Min Oh, J., & Brown, R. J. (2022). Plant-based remediation of air pollution: a review. Journal of Environmental Management, 301, 113860. doi:https://doi.org/10.1016/j.jenvman.2021.113860.
Hrdličková, Z., Michálek, J., Kolář, M., & Veselý, V. (2008). Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic. Atmospheric Environment, 42(37), 8661-8673. doi:https://doi.org/10.1016/j.atmosenv.2008.08.017.
Hu, X., Huang, H., Ruan, J., & Wang, W. (2023). Pollution Reduction, Informatization and Sustainable Urban Development—Evidence from the Smart City Projects in China. Sustainability, 15(13), 10030. doi:https://doi.org/10.3390/su151310030.
Jun He, Chen, K., Xu, J., Sun, Y., Xu, J., & Yong Sun. (2022). Reference Module in Earth Systems and Environmental Sciences. Boston: Elsevier.
Kuo, C.-Y., Chen, P.-T., Lin, Y.-C., Lin, C.-Y., Chen, H.-H., & Shih, J.-F. (2008). Factors affecting the concentrations of PM10 in central Taiwan. Chemosphere, 70(7), 1273-1279. doi:https://doi.org/10.1016/j.chemosphere.2007.07.058.
Law, A. M. (2015). Simulation modeling and analysis (Vol. 2). New York: Mcgraw-hill
Lechner, N. (2015). Heating, cooling, lighting: Sustainable design methods for architects. Hoboken, New Jersey: John wiley & sons.
Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the total environment, 476, 522-531. doi:https://doi.org/10.1016/j.scitotenv.2014.01.055.
Liu, Z., Shen, L., Yan, C., Du, J., Li, Y., & Zhao, H. (2020). Analysis of the Influence of Precipitation and Wind on PM2. 5 and PM10 in the Atmosphere. Advances in Meteorology, 2020(5), 1-13. doi:https://doi.org/10.1155/2020/5039613.
Lorig, F., Lebherz, D. S., Berndt, J. O., & Timm, I. J. (2017). Hypothesis-driven experiment design in computer simulation studies. Retrieved 30 April, 2024 from file:///C:/Users/user/Downloads/WSC_2017_final.pdf.
Muniz-Gäal, L. P., Pezzuto, C. C., de Carvalho, M. F. H., & Mota, L. T. M. (2020). Urban geometry and the microclimate of street canyons in tropical climate. Building and Environment, 169, 106547. doi:https://doi.org/10.1016/j.buildenv.2019.106547.
Nghiem, M., & Berg, A. (2022). Reducing air pollution in cities: Evaluate the gap in population engagement and policy strategies. Retrieved 30 April, 2024 from https://www.designsociety.org/publication/45809/
Ozcan, N. S., & Cubukcu, K. M. (2018). The Relationship between Urban Air Pollution and Urban Planning Decisions. Asian Journal of Quality of Life, 3(11), 181-192. doi:https://doi.org/10.21834/ajqol.v3i11.134.
Pan, H., Lu, X., & Lei, K. (2017). A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Science of the total environment, 609, 1361-1369. doi:https://doi.org/10.1016/j.scitotenv.2017.08.004.
Pishgar, E., Fanni, Z., Tavakkolinia, J., Mohammadi, A., Kiani, B., & Bergquist, R. (2020). Mortality rates due to respiratory tract diseases in Tehran, Iran during 2008–2018: a spatiotemporal, cross-sectional study. BMC Public Health, 20(1), 1-12. doi:https://doi.org/10.1186/s12889-020-09495-7.
Poursafa, P., Kelishadi, R., Ghasemian, A., Sharifi, F., Djalalinia, S., Khajavi, A., . . . Qorbani, M. (2015). Trends in health burden of ambient particulate matter pollution in Iran, 1990–2010: findings from the global burden of disease study 2010. Environmental Science and Pollution Research, 22, 18645-18653. doi:https://doi.org/10.1007/s11356-015-5545-9.
UNEP. (2022). Pollution Action Note – Data you need to know.   Retrieved 4 July, 2023 from https://www.unep.org/interactive/air-pollution-note/.
Vardoulakis, S., & Kassomenos, P. (2008). Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management. Atmospheric Environment, 42(17), 3949-3963. doi:https://doi.org/10.1016/j.atmosenv.2006.12.021.
Vlasov, D., Kosheleva, N., & Kasimov, N. (2021). Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Science of the total environment, 761, 143267. doi:https://doi.org/10.1016/j.scitotenv.2020.143267.
WHO. (2022a). Ambient (outdoor) air pollution.   Retrieved 16 September, 2023 from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
WHO. (2022b). Household air pollution.   Retrieved 4 July, 2023 from https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health.
Xu, X., Gao, Z., & Zhang, M. (2023). A review of simplified numerical approaches for fast urban airflow simulation. Building and Environment, 234, 110200. doi:https://doi.org/10.1016/j.buildenv.2023.110200.
Zhang, Y., Mo, J., Li, Y., Sundell, J., Wargocki, P., Zhang, J., . . . Leung, M. H. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 45(26), 4329-4343. doi:https://doi.org/10.1016/j.atmosenv.2011.05.041.